An integrated optimization approach for weather stations network design: a case study

Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station ne...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied climatology Vol. 156; no. 6; p. 334
Main Authors: Sadeghi, Mohammad, Yaghoubi, Saeed, Nemati, Sajedeh, Arefi, Sara
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01.06.2025
Springer Nature B.V
Subjects:
ISSN:0177-798X, 1434-4483
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station network that simultaneously addresses optimal placement and comprehensive weather parameter monitoring and managerial aspects. In so doing, this paper develops a bi-objective integer linear programming model for designing a network of meteorological centers, which incorporates not only atmospheric conditions, but also integrates efficiency assessment of weather stations according to their locations, prevailing climatic conditions and need for different stations for each climate, climatic variations across provinces and managerial aspects, and device (sensor) allocation to station in order to measure required weather parameters. As this paper aims to contribute in providing a thorough framework and cover most of the weather station related decisions and considerations, the decision-making process is carried out through a two phase procedure. First phase is the efficiency assessment phase, which potential locations of stations are valuated using Data Envelopment Analysis (DEA) based on factors such as terrain slope, population, and distance from airports, fault lines, and industrial centers. A bi-objective mathematical optimization model which covers the other related considerations and decisions, is developed in second phase. This model balances system efficiency with cost considerations as the objectives beside providing the integrated station network. Due to model complexity, an ε-constrained method converts it into a single-objective form, and Lagrangian relaxation ensures scalability. Finally, to demonstrate the practical applicability of this model, a case study from Iran is presented. 
AbstractList Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station network that simultaneously addresses optimal placement and comprehensive weather parameter monitoring and managerial aspects. In so doing, this paper develops a bi-objective integer linear programming model for designing a network of meteorological centers, which incorporates not only atmospheric conditions, but also integrates efficiency assessment of weather stations according to their locations, prevailing climatic conditions and need for different stations for each climate, climatic variations across provinces and managerial aspects, and device (sensor) allocation to station in order to measure required weather parameters. As this paper aims to contribute in providing a thorough framework and cover most of the weather station related decisions and considerations, the decision-making process is carried out through a two phase procedure. First phase is the efficiency assessment phase, which potential locations of stations are valuated using Data Envelopment Analysis (DEA) based on factors such as terrain slope, population, and distance from airports, fault lines, and industrial centers. A bi-objective mathematical optimization model which covers the other related considerations and decisions, is developed in second phase. This model balances system efficiency with cost considerations as the objectives beside providing the integrated station network. Due to model complexity, an ε-constrained method converts it into a single-objective form, and Lagrangian relaxation ensures scalability. Finally, to demonstrate the practical applicability of this model, a case study from Iran is presented.
Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station network that simultaneously addresses optimal placement and comprehensive weather parameter monitoring and managerial aspects. In so doing, this paper develops a bi-objective integer linear programming model for designing a network of meteorological centers, which incorporates not only atmospheric conditions, but also integrates efficiency assessment of weather stations according to their locations, prevailing climatic conditions and need for different stations for each climate, climatic variations across provinces and managerial aspects, and device (sensor) allocation to station in order to measure required weather parameters. As this paper aims to contribute in providing a thorough framework and cover most of the weather station related decisions and considerations, the decision-making process is carried out through a two phase procedure. First phase is the efficiency assessment phase, which potential locations of stations are valuated using Data Envelopment Analysis (DEA) based on factors such as terrain slope, population, and distance from airports, fault lines, and industrial centers. A bi-objective mathematical optimization model which covers the other related considerations and decisions, is developed in second phase. This model balances system efficiency with cost considerations as the objectives beside providing the integrated station network. Due to model complexity, an ε-constrained method converts it into a single-objective form, and Lagrangian relaxation ensures scalability. Finally, to demonstrate the practical applicability of this model, a case study from Iran is presented. 
ArticleNumber 334
Author Sadeghi, Mohammad
Arefi, Sara
Yaghoubi, Saeed
Nemati, Sajedeh
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Sadeghi
  fullname: Sadeghi, Mohammad
  organization: School of Industrial Engineering, Iran University of Science and Technology
– sequence: 2
  givenname: Saeed
  surname: Yaghoubi
  fullname: Yaghoubi, Saeed
  email: yaghoubi@iust.ac.ir
  organization: School of Industrial Engineering, Iran University of Science and Technology
– sequence: 3
  givenname: Sajedeh
  surname: Nemati
  fullname: Nemati, Sajedeh
  organization: School of Industrial Engineering, Iran University of Science and Technology
– sequence: 4
  givenname: Sara
  surname: Arefi
  fullname: Arefi, Sara
  organization: School of Industrial Engineering, Iran University of Science and Technology
BookMark eNp9kEtLQzEQhYMoWB9_wFXAjZurk8dtUncivkBwo-AupMmkXm2TmqSI_nqjFQQXMjAzMN85DGeHbMYUkZADBscMQJ2U1kB2wPsO-l7ITm-QEZNtkVKLTTICplSnJvpxm-yU8gwAfDxWI_JwFukQK86yrehpWtZhMXzYOqRI7XKZk3VPNKRM39DWJ8y01O9joRHrW8ov1GMZZvGUWupswXZf-fc9shXsvOD-z9wlD5cX9-fX3e3d1c352W3nBPS1C8KDCk47O7EgXSsL4OXUy-CmPec-KN1PlQ567LnzWgcRei0DIkclpBO75Gjt2x59XWGpZjEUh_O5jZhWxQguOfRMj2VDD_-gz2mVY_uuUYyLCQPJGsXXlMuplIzBLPOwsPndMDBfSZt10qYlbb6TNrqJxFpUGhxnmH-t_1F9Ardtg_c
Cites_doi 10.1016/j.enconman.2017.05.023
10.1175/BAMS-D-19-0198.1
10.1080/15472450.2018.1439389
10.1109/TEVC.2025.3551399
10.1111/1752-1688.12403
10.1016/j.asoc.2011.02.022
10.3390/en12081510
10.3390/s23229060
10.1007/s12351-019-00460-w
10.1080/00207543.2013.824129
10.1002/joc.2317
10.1002/met.1859
10.1175/WCAS-D-17-0054.1
10.1016/j.ecolind.2022.109586
10.1016/j.cie.2016.03.006
10.1016/j.ins.2019.10.062
10.1017/9781009260534
10.1080/14693062.2004.9685531
10.1057/jors.1994.84
10.4324/9781003522195
10.1016/j.cageo.2010.04.007
10.1016/j.jenvman.2022.116740
10.1257/app.3.4.152
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
C1K
F1W
H96
KL.
L.G
7S9
L.6
DOI 10.1007/s00704-025-05534-8
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 334
ExternalDocumentID 10_1007_s00704_025_05534_8
GeographicLocations Iran
United States--US
GeographicLocations_xml – name: Iran
– name: United States--US
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~02
~8M
~EX
AAYXX
ABRTQ
AFFHD
BANNL
CITATION
PQGLB
7QH
7TG
7TN
7UA
C1K
F1W
H96
KL.
L.G
7S9
L.6
ID FETCH-LOGICAL-c305t-f3d07fc8ca9a04c4c4a00d4bd4fcb522df785b78f86d2cd88f3f584fee2e734c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001497416600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-798X
IngestDate Fri Aug 22 20:23:53 EDT 2025
Wed Nov 05 04:10:15 EST 2025
Sat Nov 29 07:52:36 EST 2025
Fri Jun 27 01:48:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Weather stations network design
Hierarchical maximum covering
ɛ-constraint
Lagrangian relaxation
Data envelopment analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-f3d07fc8ca9a04c4c4a00d4bd4fcb522df785b78f86d2cd88f3f584fee2e734c3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 3212391041
PQPubID 48318
PageCount 1
ParticipantIDs proquest_miscellaneous_3242051864
proquest_journals_3212391041
crossref_primary_10_1007_s00704_025_05534_8
springer_journals_10_1007_s00704_025_05534_8
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Z Ardalan (5534_CR4) 2016; 96
SJ Melles (5534_CR24) 2011; 37
JAA Ballesteros (5534_CR5) 2018; 10
J Fetzer (5534_CR14) 2018; 22
A Rivera (5534_CR26) 2023; 23
J Wang (5534_CR33) 2023; 326
5534_CR29
H Tabari (5534_CR31) 2016; 52
L Benyoucef (5534_CR6) 2013; 51
V Chankong (5534_CR10) 1983; 5
S Burt (5534_CR8) 2024
H Heydari (5534_CR17) 2000; 37
5534_CR25
5534_CR28
AM Amorim (5534_CR3) 2012; 32
E Korani (5534_CR20) 2013; 20
JW Freebairn (5534_CR15) 2002; 9
Ü Sağlam (5534_CR27) 2017; 146
O Deschênes (5534_CR11) 2011; 3
S Adnan (5534_CR1) 2020; 27
M Yavari (5534_CR35) 2021; 21
G Mavrotas (5534_CR23) 2009; 213
I Čelić (5534_CR9) 2019; 66
5534_CR19
P Hughes (5534_CR18) 2024
M Lashnizand (5534_CR21) 2013; 22
5534_CR16
J Doyle (5534_CR12) 1994; 45
5534_CR32
T Matthews (5534_CR22) 2020; 101
M Sobhani (5534_CR30) 2019; 12
AM Fathollahi-Fard (5534_CR13) 2020; 512
TL Brewer (5534_CR7) 2004; 4
J Aghaei (5534_CR2) 2011; 11
S Yang (5534_CR34) 2022; 145
References_xml – ident: 5534_CR25
– volume: 146
  start-page: 52
  year: 2017
  ident: 5534_CR27
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.05.023
– ident: 5534_CR29
– volume: 101
  start-page: E1870
  issue: 11
  year: 2020
  ident: 5534_CR22
  publication-title: Bull Am Weather Soc
  doi: 10.1175/BAMS-D-19-0198.1
– volume: 22
  start-page: 503
  issue: 6
  year: 2018
  ident: 5534_CR14
  publication-title: J Intell Transp Syst
  doi: 10.1080/15472450.2018.1439389
– volume: 66
  start-page: 63
  issue: 1
  year: 2019
  ident: 5534_CR9
  publication-title: Eкoнoмикa Пoљoпpивpeдe
– ident: 5534_CR16
  doi: 10.1109/TEVC.2025.3551399
– volume: 52
  start-page: 541
  issue: 2
  year: 2016
  ident: 5534_CR31
  publication-title: JAWRA J Am Water Res Assoc
  doi: 10.1111/1752-1688.12403
– volume: 22
  start-page: 1195
  issue: 8
  year: 2013
  ident: 5534_CR21
  publication-title: World Appl Sci J
– volume: 11
  start-page: 3846
  issue: 4
  year: 2011
  ident: 5534_CR2
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.02.022
– volume: 12
  start-page: 1510
  issue: 8
  year: 2019
  ident: 5534_CR30
  publication-title: Energies
  doi: 10.3390/en12081510
– volume: 23
  start-page: 9060
  issue: 22
  year: 2023
  ident: 5534_CR26
  publication-title: Sensors
  doi: 10.3390/s23229060
– volume: 21
  start-page: 91
  year: 2021
  ident: 5534_CR35
  publication-title: Oper Res Int Journal
  doi: 10.1007/s12351-019-00460-w
– volume: 213
  start-page: 455
  issue: 2
  year: 2009
  ident: 5534_CR23
  publication-title: Appl Math Comput
– volume: 51
  start-page: 6435
  issue: 21
  year: 2013
  ident: 5534_CR6
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2013.824129
– volume: 32
  start-page: 941
  issue: 6
  year: 2012
  ident: 5534_CR3
  publication-title: Int J Climatol
  doi: 10.1002/joc.2317
– ident: 5534_CR28
– volume: 27
  start-page: e1859
  issue: 1
  year: 2020
  ident: 5534_CR1
  publication-title: Meteorol Appl
  doi: 10.1002/met.1859
– volume: 10
  start-page: 307
  issue: 2
  year: 2018
  ident: 5534_CR5
  publication-title: Weather, Climate, and Society
  doi: 10.1175/WCAS-D-17-0054.1
– volume: 145
  start-page: 109586
  year: 2022
  ident: 5534_CR34
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2022.109586
– volume: 96
  start-page: 108
  year: 2016
  ident: 5534_CR4
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.03.006
– volume: 512
  start-page: 1335
  year: 2020
  ident: 5534_CR13
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.10.062
– volume: 37
  start-page: 57
  year: 2000
  ident: 5534_CR17
  publication-title: Phys Geogr Res
– volume: 20
  start-page: 2138
  issue: 6
  year: 2013
  ident: 5534_CR20
  publication-title: Scientia Iranica
– volume-title: The weather observer's handbook
  year: 2024
  ident: 5534_CR8
  doi: 10.1017/9781009260534
– volume: 4
  start-page: 359
  issue: 4
  year: 2004
  ident: 5534_CR7
  publication-title: Climate Policy
  doi: 10.1080/14693062.2004.9685531
– volume: 5
  start-page: 1
  issue: 1
  year: 1983
  ident: 5534_CR10
  publication-title: Large Scale Systems in Information and Decision Technologies
– ident: 5534_CR19
– ident: 5534_CR32
– volume: 45
  start-page: 567
  issue: 5
  year: 1994
  ident: 5534_CR12
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.1994.84
– volume: 9
  start-page: 33
  issue: 1
  year: 2002
  ident: 5534_CR15
  publication-title: Weather Appl
– volume-title: A century of weather service: a history of the birth and growth of the national weather service, 1870–1970
  year: 2024
  ident: 5534_CR18
  doi: 10.4324/9781003522195
– volume: 37
  start-page: 280
  issue: 3
  year: 2011
  ident: 5534_CR24
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2010.04.007
– volume: 326
  start-page: 116740
  year: 2023
  ident: 5534_CR33
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2022.116740
– volume: 3
  start-page: 152
  issue: 4
  year: 2011
  ident: 5534_CR11
  publication-title: Am Econ J Appl Econ
  doi: 10.1257/app.3.4.152
SSID ssj0002667
Score 2.4206846
Snippet Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 334
SubjectTerms Airports
Aquatic Pollution
Atmospheric conditions
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Case studies
climate
Climate change
Climate variations
Climatic conditions
Climatology
Data envelopment analysis
Decision making
Earth and Environmental Science
Earth Sciences
Efficiency
Fault lines
Integer programming
Iran
Linear programming
Mathematical analysis
Network design
Optimization models
Parameters
Resource management
topographic slope
transportation
Waste Water Technology
Water Management
Water Pollution Control
Weather
Weather forecasting
Weather stations
Title An integrated optimization approach for weather stations network design: a case study
URI https://link.springer.com/article/10.1007/s00704-025-05534-8
https://www.proquest.com/docview/3212391041
https://www.proquest.com/docview/3242051864
Volume 156
WOSCitedRecordID wos001497416600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDFt1hdJYJ40UBt003qbREXLy6iruytpHnAgray3dW_7zR9LIoelJ7ahDTMJDNfMi-AU9MrzTOmRyVOk7LIKpr6gaRC4ecgknHMq2ITfDgU43F8XweFFY23e2OSdJK6DXYrM9MwWpZf9aMoZFQswwqqO1EWbHh4fG7lL6qcKkiac8pjMa5DZX4e46s6WmDMb2ZRp20GG_-b5yas1-iS9KvlsAVLJtsG7w6BcT519-fkjFy_TBClurcdGPUz0maM0CRHAfJaR2aSJt04QVxLPiqoSIrKdF-QrPIfJ9q5gFwRSRQqROLS1e7CaHDzdH1L60oLVOF-n1Ebap9bJZSMpc8UPtL3NUs1sypFhKYtF1HKhRU9HSgthA0tIhdrTGB4yFS4B50sz8w-kJT7kQ3CyMZastiEEs-PeCbhiotU21R5cN4QPHmrEmokbepkR7oESZc40iXCg27Dk6TeXEUSluoWYQ679OCkbcZtUdo6ZGbyedmHBShvRI95cNHwaTHE7388-Fv3Q1gLHKvLe5kudGbTuTmCVfU-mxTTY7cwPwFplN72
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gV58i9VVI4gXDdQ23aTeRBRFXUR3ZW8lzQMWtCvbXf37TtOHKHpQemoT0jBJZr5kZr4AHJh24Z4xbSqxm5RFVtHUDyQVCj8HkYxjXl42wTsd0e_H91VSWF5Hu9cuSaepm2S3gpmG0eL6VT-KQkbFNMwytFgFY_7D41Ojf9HklEnSnFMei36VKvNzG1_N0SfG_OYWddbmcul__VyGxQpdkrNyOqzAlMlWwbtDYDwcufNzckjOnweIUt3bGvTOMtIwRmgyRAXyUmVmkppunCCuJe8lVCR56brPSVbGjxPtQkBOiSQKDSJxdLXr0Lu86J5f0eqmBapwvY-pDbXPrRJKxtJnCh_p-5qlmlmVIkLTloso5cKKtg6UFsKGFpGLNSYwPGQq3ICZbJiZTSAp9yMbhJGNtWSxCSXuH3FPwhUXqbap8uCoFnjyWhJqJA11shNdgqJLnOgS4UGrHpOkWlx5EhbmFmEOO_FgvynGZVH4OmRmhpOiDgtQ34g28-C4HqfPJn7_49bfqu_B_FX37ja5ve7cbMNC4Ia9OKNpwcx4NDE7MKfexoN8tOsm6Qfl0eHa
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EF-8xXpGEF80WNt0k_om6qKoi-DBvpU0Bwjald1V_76T9PBAH0T61CakYZLMfMnMfAHYNi3nnjEtKrGblCVW0TyMJBUKP0eJTFNeXjbBOx3R7abXn7L4fbR77ZIscxocS1Mx3H_Wdr9JfHMsNYy6q1jDJIkZFaMwzlwgvduv39w3uhjNT5kwzTnlqehWaTM_t_HVNH3gzW8uUm952jP_7_MsTFeokxyV02QORkwxD8EVAuZe35-rkx1y_PiA6NW_LcDdUUEaJglNeqhYnqqMTVLTkBPEu-SthJBkULr0B6Qo48qJ9qEhh0QShYaSeBrbRbhrn94en9HqBgaqUA8MqY11yK0SSqYyZAofGYaa5ZpZlSNy05aLJOfCipaOlBbCxhYRjTUmMjxmKl6CsaJXmGUgOQ8TG8WJTbVkqYkl7itxr8IVF7m2uQpgtxZ-9lwSbWQNpbIXXYaiy7zoMhHAWj0-WbXoBlnszDDCH3YQwFZTjMvF-UBkYXovrg6LUA-JFgtgrx6zjyZ-_-PK36pvwuT1STu7PO9crMJU5EfdHd2swdiw_2LWYUK9Dh8G_Q0_X98BPXHqvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+optimization+approach+for+weather+stations+network+design%3A+a+case+study&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Sadeghi%2C+Mohammad&rft.au=Yaghoubi%2C+Saeed&rft.au=Nemati%2C+Sajedeh&rft.au=Arefi%2C+Sara&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=156&rft.issue=6&rft.spage=334&rft_id=info:doi/10.1007%2Fs00704-025-05534-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon