An integrated optimization approach for weather stations network design: a case study
Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station ne...
Saved in:
| Published in: | Theoretical and applied climatology Vol. 156; no. 6; p. 334 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Vienna
Springer Vienna
01.06.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0177-798X, 1434-4483 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station network that simultaneously addresses optimal placement and comprehensive weather parameter monitoring and managerial aspects. In so doing, this paper develops a bi-objective integer linear programming model for designing a network of meteorological centers, which incorporates not only atmospheric conditions, but also integrates efficiency assessment of weather stations according to their locations, prevailing climatic conditions and need for different stations for each climate, climatic variations across provinces and managerial aspects, and device (sensor) allocation to station in order to measure required weather parameters. As this paper aims to contribute in providing a thorough framework and cover most of the weather station related decisions and considerations, the decision-making process is carried out through a two phase procedure. First phase is the efficiency assessment phase, which potential locations of stations are valuated using Data Envelopment Analysis (DEA) based on factors such as terrain slope, population, and distance from airports, fault lines, and industrial centers. A bi-objective mathematical optimization model which covers the other related considerations and decisions, is developed in second phase. This model balances system efficiency with cost considerations as the objectives beside providing the integrated station network. Due to model complexity, an ε-constrained method converts it into a single-objective form, and Lagrangian relaxation ensures scalability. Finally, to demonstrate the practical applicability of this model, a case study from Iran is presented. |
|---|---|
| AbstractList | Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station network that simultaneously addresses optimal placement and comprehensive weather parameter monitoring and managerial aspects. In so doing, this paper develops a bi-objective integer linear programming model for designing a network of meteorological centers, which incorporates not only atmospheric conditions, but also integrates efficiency assessment of weather stations according to their locations, prevailing climatic conditions and need for different stations for each climate, climatic variations across provinces and managerial aspects, and device (sensor) allocation to station in order to measure required weather parameters. As this paper aims to contribute in providing a thorough framework and cover most of the weather station related decisions and considerations, the decision-making process is carried out through a two phase procedure. First phase is the efficiency assessment phase, which potential locations of stations are valuated using Data Envelopment Analysis (DEA) based on factors such as terrain slope, population, and distance from airports, fault lines, and industrial centers. A bi-objective mathematical optimization model which covers the other related considerations and decisions, is developed in second phase. This model balances system efficiency with cost considerations as the objectives beside providing the integrated station network. Due to model complexity, an ε-constrained method converts it into a single-objective form, and Lagrangian relaxation ensures scalability. Finally, to demonstrate the practical applicability of this model, a case study from Iran is presented. Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in agriculture and transportation. To enhance forecasting capabilities, this study develops an integrated and optimized meteorological station network that simultaneously addresses optimal placement and comprehensive weather parameter monitoring and managerial aspects. In so doing, this paper develops a bi-objective integer linear programming model for designing a network of meteorological centers, which incorporates not only atmospheric conditions, but also integrates efficiency assessment of weather stations according to their locations, prevailing climatic conditions and need for different stations for each climate, climatic variations across provinces and managerial aspects, and device (sensor) allocation to station in order to measure required weather parameters. As this paper aims to contribute in providing a thorough framework and cover most of the weather station related decisions and considerations, the decision-making process is carried out through a two phase procedure. First phase is the efficiency assessment phase, which potential locations of stations are valuated using Data Envelopment Analysis (DEA) based on factors such as terrain slope, population, and distance from airports, fault lines, and industrial centers. A bi-objective mathematical optimization model which covers the other related considerations and decisions, is developed in second phase. This model balances system efficiency with cost considerations as the objectives beside providing the integrated station network. Due to model complexity, an ε-constrained method converts it into a single-objective form, and Lagrangian relaxation ensures scalability. Finally, to demonstrate the practical applicability of this model, a case study from Iran is presented. |
| ArticleNumber | 334 |
| Author | Sadeghi, Mohammad Arefi, Sara Yaghoubi, Saeed Nemati, Sajedeh |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Sadeghi fullname: Sadeghi, Mohammad organization: School of Industrial Engineering, Iran University of Science and Technology – sequence: 2 givenname: Saeed surname: Yaghoubi fullname: Yaghoubi, Saeed email: yaghoubi@iust.ac.ir organization: School of Industrial Engineering, Iran University of Science and Technology – sequence: 3 givenname: Sajedeh surname: Nemati fullname: Nemati, Sajedeh organization: School of Industrial Engineering, Iran University of Science and Technology – sequence: 4 givenname: Sara surname: Arefi fullname: Arefi, Sara organization: School of Industrial Engineering, Iran University of Science and Technology |
| BookMark | eNp9kEtLQzEQhYMoWB9_wFXAjZurk8dtUncivkBwo-AupMmkXm2TmqSI_nqjFQQXMjAzMN85DGeHbMYUkZADBscMQJ2U1kB2wPsO-l7ITm-QEZNtkVKLTTICplSnJvpxm-yU8gwAfDxWI_JwFukQK86yrehpWtZhMXzYOqRI7XKZk3VPNKRM39DWJ8y01O9joRHrW8ov1GMZZvGUWupswXZf-fc9shXsvOD-z9wlD5cX9-fX3e3d1c352W3nBPS1C8KDCk47O7EgXSsL4OXUy-CmPec-KN1PlQ567LnzWgcRei0DIkclpBO75Gjt2x59XWGpZjEUh_O5jZhWxQguOfRMj2VDD_-gz2mVY_uuUYyLCQPJGsXXlMuplIzBLPOwsPndMDBfSZt10qYlbb6TNrqJxFpUGhxnmH-t_1F9Ardtg_c |
| Cites_doi | 10.1016/j.enconman.2017.05.023 10.1175/BAMS-D-19-0198.1 10.1080/15472450.2018.1439389 10.1109/TEVC.2025.3551399 10.1111/1752-1688.12403 10.1016/j.asoc.2011.02.022 10.3390/en12081510 10.3390/s23229060 10.1007/s12351-019-00460-w 10.1080/00207543.2013.824129 10.1002/joc.2317 10.1002/met.1859 10.1175/WCAS-D-17-0054.1 10.1016/j.ecolind.2022.109586 10.1016/j.cie.2016.03.006 10.1016/j.ins.2019.10.062 10.1017/9781009260534 10.1080/14693062.2004.9685531 10.1057/jors.1994.84 10.4324/9781003522195 10.1016/j.cageo.2010.04.007 10.1016/j.jenvman.2022.116740 10.1257/app.3.4.152 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION 7QH 7TG 7TN 7UA C1K F1W H96 KL. L.G 7S9 L.6 |
| DOI | 10.1007/s00704-025-05534-8 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1434-4483 |
| EndPage | 334 |
| ExternalDocumentID | 10_1007_s00704_025_05534_8 |
| GeographicLocations | Iran United States--US |
| GeographicLocations_xml | – name: Iran – name: United States--US |
| GroupedDBID | -Y2 -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z8Z ZMTXR ZY4 ~02 ~8M ~EX AAYXX ABRTQ AFFHD BANNL CITATION PQGLB 7QH 7TG 7TN 7UA C1K F1W H96 KL. L.G 7S9 L.6 |
| ID | FETCH-LOGICAL-c305t-f3d07fc8ca9a04c4c4a00d4bd4fcb522df785b78f86d2cd88f3f584fee2e734c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001497416600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-798X |
| IngestDate | Fri Aug 22 20:23:53 EDT 2025 Wed Nov 05 04:10:15 EST 2025 Sat Nov 29 07:52:36 EST 2025 Fri Jun 27 01:48:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Weather stations network design Hierarchical maximum covering ɛ-constraint Lagrangian relaxation Data envelopment analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c305t-f3d07fc8ca9a04c4c4a00d4bd4fcb522df785b78f86d2cd88f3f584fee2e734c3 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3212391041 |
| PQPubID | 48318 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3242051864 proquest_journals_3212391041 crossref_primary_10_1007_s00704_025_05534_8 springer_journals_10_1007_s00704_025_05534_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Theoretical and applied climatology |
| PublicationTitleAbbrev | Theor Appl Climatol |
| PublicationYear | 2025 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | Z Ardalan (5534_CR4) 2016; 96 SJ Melles (5534_CR24) 2011; 37 JAA Ballesteros (5534_CR5) 2018; 10 J Fetzer (5534_CR14) 2018; 22 A Rivera (5534_CR26) 2023; 23 J Wang (5534_CR33) 2023; 326 5534_CR29 H Tabari (5534_CR31) 2016; 52 L Benyoucef (5534_CR6) 2013; 51 V Chankong (5534_CR10) 1983; 5 S Burt (5534_CR8) 2024 H Heydari (5534_CR17) 2000; 37 5534_CR25 5534_CR28 AM Amorim (5534_CR3) 2012; 32 E Korani (5534_CR20) 2013; 20 JW Freebairn (5534_CR15) 2002; 9 Ü Sağlam (5534_CR27) 2017; 146 O Deschênes (5534_CR11) 2011; 3 S Adnan (5534_CR1) 2020; 27 M Yavari (5534_CR35) 2021; 21 G Mavrotas (5534_CR23) 2009; 213 I Čelić (5534_CR9) 2019; 66 5534_CR19 P Hughes (5534_CR18) 2024 M Lashnizand (5534_CR21) 2013; 22 5534_CR16 J Doyle (5534_CR12) 1994; 45 5534_CR32 T Matthews (5534_CR22) 2020; 101 M Sobhani (5534_CR30) 2019; 12 AM Fathollahi-Fard (5534_CR13) 2020; 512 TL Brewer (5534_CR7) 2004; 4 J Aghaei (5534_CR2) 2011; 11 S Yang (5534_CR34) 2022; 145 |
| References_xml | – ident: 5534_CR25 – volume: 146 start-page: 52 year: 2017 ident: 5534_CR27 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.05.023 – ident: 5534_CR29 – volume: 101 start-page: E1870 issue: 11 year: 2020 ident: 5534_CR22 publication-title: Bull Am Weather Soc doi: 10.1175/BAMS-D-19-0198.1 – volume: 22 start-page: 503 issue: 6 year: 2018 ident: 5534_CR14 publication-title: J Intell Transp Syst doi: 10.1080/15472450.2018.1439389 – volume: 66 start-page: 63 issue: 1 year: 2019 ident: 5534_CR9 publication-title: Eкoнoмикa Пoљoпpивpeдe – ident: 5534_CR16 doi: 10.1109/TEVC.2025.3551399 – volume: 52 start-page: 541 issue: 2 year: 2016 ident: 5534_CR31 publication-title: JAWRA J Am Water Res Assoc doi: 10.1111/1752-1688.12403 – volume: 22 start-page: 1195 issue: 8 year: 2013 ident: 5534_CR21 publication-title: World Appl Sci J – volume: 11 start-page: 3846 issue: 4 year: 2011 ident: 5534_CR2 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.02.022 – volume: 12 start-page: 1510 issue: 8 year: 2019 ident: 5534_CR30 publication-title: Energies doi: 10.3390/en12081510 – volume: 23 start-page: 9060 issue: 22 year: 2023 ident: 5534_CR26 publication-title: Sensors doi: 10.3390/s23229060 – volume: 21 start-page: 91 year: 2021 ident: 5534_CR35 publication-title: Oper Res Int Journal doi: 10.1007/s12351-019-00460-w – volume: 213 start-page: 455 issue: 2 year: 2009 ident: 5534_CR23 publication-title: Appl Math Comput – volume: 51 start-page: 6435 issue: 21 year: 2013 ident: 5534_CR6 publication-title: Int J Prod Res doi: 10.1080/00207543.2013.824129 – volume: 32 start-page: 941 issue: 6 year: 2012 ident: 5534_CR3 publication-title: Int J Climatol doi: 10.1002/joc.2317 – ident: 5534_CR28 – volume: 27 start-page: e1859 issue: 1 year: 2020 ident: 5534_CR1 publication-title: Meteorol Appl doi: 10.1002/met.1859 – volume: 10 start-page: 307 issue: 2 year: 2018 ident: 5534_CR5 publication-title: Weather, Climate, and Society doi: 10.1175/WCAS-D-17-0054.1 – volume: 145 start-page: 109586 year: 2022 ident: 5534_CR34 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2022.109586 – volume: 96 start-page: 108 year: 2016 ident: 5534_CR4 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2016.03.006 – volume: 512 start-page: 1335 year: 2020 ident: 5534_CR13 publication-title: Inf Sci doi: 10.1016/j.ins.2019.10.062 – volume: 37 start-page: 57 year: 2000 ident: 5534_CR17 publication-title: Phys Geogr Res – volume: 20 start-page: 2138 issue: 6 year: 2013 ident: 5534_CR20 publication-title: Scientia Iranica – volume-title: The weather observer's handbook year: 2024 ident: 5534_CR8 doi: 10.1017/9781009260534 – volume: 4 start-page: 359 issue: 4 year: 2004 ident: 5534_CR7 publication-title: Climate Policy doi: 10.1080/14693062.2004.9685531 – volume: 5 start-page: 1 issue: 1 year: 1983 ident: 5534_CR10 publication-title: Large Scale Systems in Information and Decision Technologies – ident: 5534_CR19 – ident: 5534_CR32 – volume: 45 start-page: 567 issue: 5 year: 1994 ident: 5534_CR12 publication-title: J Oper Res Soc doi: 10.1057/jors.1994.84 – volume: 9 start-page: 33 issue: 1 year: 2002 ident: 5534_CR15 publication-title: Weather Appl – volume-title: A century of weather service: a history of the birth and growth of the national weather service, 1870–1970 year: 2024 ident: 5534_CR18 doi: 10.4324/9781003522195 – volume: 37 start-page: 280 issue: 3 year: 2011 ident: 5534_CR24 publication-title: Comput Geosci doi: 10.1016/j.cageo.2010.04.007 – volume: 326 start-page: 116740 year: 2023 ident: 5534_CR33 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2022.116740 – volume: 3 start-page: 152 issue: 4 year: 2011 ident: 5534_CR11 publication-title: Am Econ J Appl Econ doi: 10.1257/app.3.4.152 |
| SSID | ssj0002667 |
| Score | 2.4206846 |
| Snippet | Accurate and reliable weather forecasting plays a crucial role in supporting decision-making and resource management across multiple sectors, particularly in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 334 |
| SubjectTerms | Airports Aquatic Pollution Atmospheric conditions Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Case studies climate Climate change Climate variations Climatic conditions Climatology Data envelopment analysis Decision making Earth and Environmental Science Earth Sciences Efficiency Fault lines Integer programming Iran Linear programming Mathematical analysis Network design Optimization models Parameters Resource management topographic slope transportation Waste Water Technology Water Management Water Pollution Control Weather Weather forecasting Weather stations |
| Title | An integrated optimization approach for weather stations network design: a case study |
| URI | https://link.springer.com/article/10.1007/s00704-025-05534-8 https://www.proquest.com/docview/3212391041 https://www.proquest.com/docview/3242051864 |
| Volume | 156 |
| WOSCitedRecordID | wos001497416600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXjxW5xOiSBeNNC12fLqbQyHF4eok91KPmGgnayb_vu-ph9D0YPSU2hIykvyfr_mfRFy7gBhRyvFhJWCcaEMAyUU09zEoDsxjyX4YhNiOITxOL4vg8Kyytu9Mkl6TV0Hu-WZaTjLy68GnU7EGaySNYQ7yAs2PDw-1_oXIacIkhaCiRjGZajMz2N8haMlx_xmFvVoM9j633duk82SXdJesR12yIpNd0nzDonxdObvz-kF7b9MkKX61h4Z9VJaZ4wwdIoK5LWMzKRVunGKvJZ-FFSRZoXpPqNp4T9OjXcBuaaSagRE6tPV7pPR4Oapf8vKSgtM43mfMxeZQDgNWsYy4BofGQSGK8OdVsjQjBPQUQIcdE2oDYCLHDIXZ21oRcR1dEAa6TS1h4SGQrdVuxtyKTV3ykKsbRiLAH8kXRskb5LLSuDJW5FQI6lTJ3vRJSi6xIsugSZpVWuSlIcrS6IcbpHm8HaTnNWv8Vjktg6Z2uki78ND1DfQxQmvqnVaDvH7jEd_635MNkK_1Pm9TIs05rOFPSHr-n0-yWanfmN-ArYS3zU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD7UVdAXq1ZxvdQUSl9qYHYmuznjm4jLFnWR1i37NuQKgs7Kzqp_3zOZi7TUB8s8hQnJcJKc75ucnC8AXz0S7BituXRKciG15ail5kbYFE0_FanCcNmEHI9xOk2v66Swojnt3oQkg6duk91KZRrBy-tXo34_ERyXYFkQYpWK-T9__W79L0FOlSQtJZcpTutUmX-38SccvXLMv8KiAW2GH__vOzdgvWaX7LSaDpvwweVb0L0iYjybh_1z9o2d3d0SSw2lTzA5zVmrGGHZjBzIfZ2ZyRq5cUa8lj1XVJEVVei-YHl1fpzZcATkhClmCBBZkKvdhsnw_OZsxOubFrih9b7gPrGR9AaNSlUkDD0qiqzQVnijiaFZL7GvJXoc2NhYRJ94Yi7eudjJRJhkBzr5LHe7wGJpero3iIVSRnjtMDUuTmVEP5K-h0p04Xtj8OyhEtTIWunkYLqMTJcF02XYhYNmTLJ6cRVZUsIt0RzR68KX9jUtizLWoXI3eyzriJj8DQ6ow-NmnF6beLvHvfdVP4LV0c3VZXb5Y3yxD2txGPZyj-YAOov5ozuEFfO0uC3mn8MkfQE1UuIZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-sluKLX23x_IwgvrTBvd3cZdY3UQ9L9RCq5d6WfIJQ9-Tu1H_fSfZDK-1DKfu0bEiWmWTml8zMLwD7HsntGK25dEpyIbXlqKXmRtgcTS8XucJ42YQcDnE0yq9eVfHHbPcmJFnVNASWpnJ2eG_9YVv4FlhqBA9XsSa9XiY4voMFERLpw379x8_WFpP7qQqmpeQyx1FdNvPnPn53TS94802INHqewfL___MKLNWokx1X02QV5ly5Bp1LAszjSTxXZwfs5Nctodf49hFujkvWMklYNibDcldXbLKGhpwR3mVPFYRk0yqkP2VllVfObEwNOWKKGXKULNLYfoKbwdn1yTmvb2DghuzAjPvMJtIbNCpXiTD0qCSxQlvhjSbkZr3EnpbosW9TYxF95gnReOdSJzNhss8wX45Ltw4slaaru_1UKGWE1w5z49JcJrTB9F1UogNfGuEX9xXRRtFSKkfRFSS6IoquwA5sNfop6kU3LbLghgn-iG4H9trPtFxCDESVbvwQ2oiU7BD2acCvjc5euvj7iBv_1nwXPlydDoqLb8Pvm7CYRq2Ho5stmJ9NHtw2vDePs9vpZCfO12eZHOr9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+optimization+approach+for+weather+stations+network+design%3A+a+case+study&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Sadeghi%2C+Mohammad&rft.au=Yaghoubi%2C+Saeed&rft.au=Nemati%2C+Sajedeh&rft.au=Arefi%2C+Sara&rft.date=2025-06-01&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=156&rft.issue=6&rft_id=info:doi/10.1007%2Fs00704-025-05534-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00704_025_05534_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |