A new concept of semistrict quasiconvexity for vector functions
We establish a new concept of semistrict quasiconvexity for vector functions defined on a nonempty convex set in a real linear space X that take values in some real topological linear space Y, partially ordered by a proper solid convex cone C. The so-called semistrict C-quasiconvexity notion recover...
Uloženo v:
| Vydáno v: | Optimization Ročník 74; číslo 14; s. 3573 - 3601 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
26.10.2025
|
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We establish a new concept of semistrict quasiconvexity for vector functions defined on a nonempty convex set in a real linear space X that take values in some real topological linear space Y, partially ordered by a proper solid convex cone C. The so-called semistrict C-quasiconvexity notion recovers the classical concept of semistrict quasiconvexity of scalar functions when
$ Y=\mathbb {R} $
Y
=
R
and
$ C=\mathbb {R}_+ $
C
=
R
+
. Additionally, analogous to the scalar scenario, if the cone C is closed, a vector function is both semistrictly C-quasiconvex and C-quasiconvex (in the sense of Luc, 1989) if and only if it is explicitly C-quasiconvex (in the sense of Popovici, 2007). Finally, we convey a characterization of semistrictly C-quasiconvex functions by means of scalar semistrictly quasiconvex functions that are compositions of the nonlinear scalarization functions introduced by Gerstewitz (Tammer) in 1983 with the initial vector function. In light of this characterization, the new concept of semistrict C-quasiconvexity seems to be a natural vector counterpart for the scalar concept of semistrict quasiconvexity. |
|---|---|
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2024.2384919 |