A new concept of semistrict quasiconvexity for vector functions

We establish a new concept of semistrict quasiconvexity for vector functions defined on a nonempty convex set in a real linear space X that take values in some real topological linear space Y, partially ordered by a proper solid convex cone C. The so-called semistrict C-quasiconvexity notion recover...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 74; číslo 14; s. 3573 - 3601
Hlavní autori: Günther, Christian, Orzan, Alexandru, Popovici, Nicolae
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 26.10.2025
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We establish a new concept of semistrict quasiconvexity for vector functions defined on a nonempty convex set in a real linear space X that take values in some real topological linear space Y, partially ordered by a proper solid convex cone C. The so-called semistrict C-quasiconvexity notion recovers the classical concept of semistrict quasiconvexity of scalar functions when $ Y=\mathbb {R} $ Y = R and $ C=\mathbb {R}_+ $ C = R + . Additionally, analogous to the scalar scenario, if the cone C is closed, a vector function is both semistrictly C-quasiconvex and C-quasiconvex (in the sense of Luc, 1989) if and only if it is explicitly C-quasiconvex (in the sense of Popovici, 2007). Finally, we convey a characterization of semistrictly C-quasiconvex functions by means of scalar semistrictly quasiconvex functions that are compositions of the nonlinear scalarization functions introduced by Gerstewitz (Tammer) in 1983 with the initial vector function. In light of this characterization, the new concept of semistrict C-quasiconvexity seems to be a natural vector counterpart for the scalar concept of semistrict quasiconvexity.
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2024.2384919