A new concept of semistrict quasiconvexity for vector functions

We establish a new concept of semistrict quasiconvexity for vector functions defined on a nonempty convex set in a real linear space X that take values in some real topological linear space Y, partially ordered by a proper solid convex cone C. The so-called semistrict C-quasiconvexity notion recover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 74; H. 14; S. 3573 - 3601
Hauptverfasser: Günther, Christian, Orzan, Alexandru, Popovici, Nicolae
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 26.10.2025
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a new concept of semistrict quasiconvexity for vector functions defined on a nonempty convex set in a real linear space X that take values in some real topological linear space Y, partially ordered by a proper solid convex cone C. The so-called semistrict C-quasiconvexity notion recovers the classical concept of semistrict quasiconvexity of scalar functions when $ Y=\mathbb {R} $ Y = R and $ C=\mathbb {R}_+ $ C = R + . Additionally, analogous to the scalar scenario, if the cone C is closed, a vector function is both semistrictly C-quasiconvex and C-quasiconvex (in the sense of Luc, 1989) if and only if it is explicitly C-quasiconvex (in the sense of Popovici, 2007). Finally, we convey a characterization of semistrictly C-quasiconvex functions by means of scalar semistrictly quasiconvex functions that are compositions of the nonlinear scalarization functions introduced by Gerstewitz (Tammer) in 1983 with the initial vector function. In light of this characterization, the new concept of semistrict C-quasiconvexity seems to be a natural vector counterpart for the scalar concept of semistrict quasiconvexity.
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2024.2384919