Adaptive, multi-parameter battery state estimator with optimized time-weighting factors
We derive and implement a battery control algorithm that can accommodate an arbitrary number of model parameters, with each model parameter having its own time-weighting factor, and we propose a method to determine optimal values for the time-weighting factors. Time-weighting factors are employed to...
Uložené v:
| Vydané v: | Journal of applied electrochemistry Ročník 37; číslo 5; s. 605 - 616 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Nature B.V
01.05.2007
|
| Predmet: | |
| ISSN: | 0021-891X, 1572-8838 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We derive and implement a battery control algorithm that can accommodate an arbitrary number of model parameters, with each model parameter having its own time-weighting factor, and we propose a method to determine optimal values for the time-weighting factors. Time-weighting factors are employed to give greater impact to recent data for the determination of a system’s state. We employ the (controls) methodology of weighted recursive least squares, and the time weighting corresponds to the exponential-forgetting formalism. The output from the adaptive algorithm is the battery state of charge (remaining energy), state of health (relative to the battery’s nominal performance), and predicted power capability. Results are presented for a high-power lithium ion battery. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0021-891X 1572-8838 |
| DOI: | 10.1007/s10800-007-9291-7 |