Adaptive, multi-parameter battery state estimator with optimized time-weighting factors

We derive and implement a battery control algorithm that can accommodate an arbitrary number of model parameters, with each model parameter having its own time-weighting factor, and we propose a method to determine optimal values for the time-weighting factors. Time-weighting factors are employed to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied electrochemistry Ročník 37; číslo 5; s. 605 - 616
Hlavní autor: Verbrugge, Mark
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.05.2007
Témata:
ISSN:0021-891X, 1572-8838
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We derive and implement a battery control algorithm that can accommodate an arbitrary number of model parameters, with each model parameter having its own time-weighting factor, and we propose a method to determine optimal values for the time-weighting factors. Time-weighting factors are employed to give greater impact to recent data for the determination of a system’s state. We employ the (controls) methodology of weighted recursive least squares, and the time weighting corresponds to the exponential-forgetting formalism. The output from the adaptive algorithm is the battery state of charge (remaining energy), state of health (relative to the battery’s nominal performance), and predicted power capability. Results are presented for a high-power lithium ion battery.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0021-891X
1572-8838
DOI:10.1007/s10800-007-9291-7