The CEO problem [multiterminal source coding]

We consider a new problem in multiterminal source coding motivated by the following decentralized communication/estimation task. A firm's Chief Executive Officer (CEO) is interested in the data sequence {X(t)}/sub t=1//sup /spl infin// which cannot be observed directly, perhaps because it repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 42; H. 3; S. 887 - 902
Hauptverfasser: Berger, T., Zhen Zhang, Viswanathan, H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.1996
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a new problem in multiterminal source coding motivated by the following decentralized communication/estimation task. A firm's Chief Executive Officer (CEO) is interested in the data sequence {X(t)}/sub t=1//sup /spl infin// which cannot be observed directly, perhaps because it represents tactical decisions by a competing firm. The CEO deploys a team of L agents who observe independently corrupted versions of {X(t)}/sub t=1//sup /spl infin//. Because {X(t)} is only one among many pressing matters to which the CEO must attend, the combined data rate at which the agents may communicate information about their observations to the CEO is limited to, say, R bits per second. If the agents were permitted to confer and pool their data, then in the limit as L/spl rarr//spl infin/ they usually would be able to smooth out their independent observation noises entirely. Then they could use their R bits per second to provide the CEO with a representation of {X(t)} with fidelity D(R), where D(/spl middot/) is the distortion-rate function of {X(t)}. In particular, with such data pooling D can be made arbitrarily small if R exceeds the entropy rate H of {X(t)}. Suppose, however, that the agents are not permitted to convene, Agent i having to send data based solely on his own noisy observations {Y/sub i/(t)}. We show that then there does not exist a finite value of R for which even infinitely many agents can make D arbitrarily small. Furthermore, in this isolated-agents case we determine the asymptotic behavior of the minimal error frequency in the limit as L and then R tend to infinity.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.490552