Combined Fisherfaces framework

In this paper, a Complex LDA based combined Fisherfaces framework, coined Complex Fisherfaces, is developed for face feature extraction and recognition. In this framework, Principal Component Analysis (PCA) and Kernel PCA (KPCA) are first used for feature extraction. Then, the resulting PCA-based li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing Jg. 21; H. 12; S. 1037 - 1044
Hauptverfasser: Yang, Jian, Yang, Jing-yu, Frangi, Alejandro F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.11.2003
Schlagworte:
ISSN:0262-8856, 1872-8138
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a Complex LDA based combined Fisherfaces framework, coined Complex Fisherfaces, is developed for face feature extraction and recognition. In this framework, Principal Component Analysis (PCA) and Kernel PCA (KPCA) are first used for feature extraction. Then, the resulting PCA-based linear features and KPCA-based nonlinear features are integrated by complex vectors and, Complex LDA is further employed for feature fusion. The proposed method is tested on a subset of FERET database. The experimental results demonstrate that Complex Fisherfaces outperforms Fisherfaces and Kernel Fisherfaces. Also, the complex vector based parallel feature fusion strategy is demonstrated to be much more effective and robust than the super-vector based serial feature fusion strategy for face recognition.
ISSN:0262-8856
1872-8138
DOI:10.1016/j.imavis.2003.07.005