Combined Fisherfaces framework

In this paper, a Complex LDA based combined Fisherfaces framework, coined Complex Fisherfaces, is developed for face feature extraction and recognition. In this framework, Principal Component Analysis (PCA) and Kernel PCA (KPCA) are first used for feature extraction. Then, the resulting PCA-based li...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Image and vision computing Ročník 21; číslo 12; s. 1037 - 1044
Hlavní autori: Yang, Jian, Yang, Jing-yu, Frangi, Alejandro F.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2003
Predmet:
ISSN:0262-8856, 1872-8138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a Complex LDA based combined Fisherfaces framework, coined Complex Fisherfaces, is developed for face feature extraction and recognition. In this framework, Principal Component Analysis (PCA) and Kernel PCA (KPCA) are first used for feature extraction. Then, the resulting PCA-based linear features and KPCA-based nonlinear features are integrated by complex vectors and, Complex LDA is further employed for feature fusion. The proposed method is tested on a subset of FERET database. The experimental results demonstrate that Complex Fisherfaces outperforms Fisherfaces and Kernel Fisherfaces. Also, the complex vector based parallel feature fusion strategy is demonstrated to be much more effective and robust than the super-vector based serial feature fusion strategy for face recognition.
ISSN:0262-8856
1872-8138
DOI:10.1016/j.imavis.2003.07.005