Phase retrieval based on a total‐variation‐regularized Poisson model for X‐ray ptychographic imaging of low‐contrast objects
Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X‐ray beam and visualizes the complex‐valued refractive index of the specimen by a computational reconstruction called phase retrieval...
Uloženo v:
| Vydáno v: | Journal of applied crystallography Ročník 55; číslo 4; s. 978 - 992 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
5 Abbey Square, Chester, Cheshire CH1 2HU, England
International Union of Crystallography
01.08.2022
Blackwell Publishing Ltd |
| Témata: | |
| ISSN: | 1600-5767, 0021-8898, 1600-5767 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X‐ray beam and visualizes the complex‐valued refractive index of the specimen by a computational reconstruction called phase retrieval. The quality of imaging is dependent on the used phase‐retrieval algorithm, especially when the intensity of the diffraction patterns in the high‐spatial‐frequency range is low and/or when the spatial overlap of the illumination area is small. In this paper, a phase‐retrieval algorithm, AMPAM, based on the Poisson model and total variation (TV) is proposed. It applies alternating minimization using primal‐dual splitting and gradient‐descent algorithms to compute the result without matrix inversion. The imaging capability of the proposed algorithm from low‐dose and/or sparsely scanned data was investigated by numerical simulations. The proposed algorithm was compared with ADPr, which is the state‐of‐the‐art algorithm based on the TV‐regularized Poisson model. The results indicated that AMPAM can provide good‐quality images with a computational cost 7–11 times less than ADPr. In addition, ink toner and macroporous silica particles were imaged at SPring‐8 BL24XU to confirm the applicability of the algorithm to actual measurements.
This paper presents a phase‐retrieval algorithm for ptychography, named AMPAM. The imaging capability of AMPAM was investigated by numerical simulations and measurements performed at SPring‐8. |
|---|---|
| AbstractList | Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X‐ray beam and visualizes the complex‐valued refractive index of the specimen by a computational reconstruction called phase retrieval. The quality of imaging is dependent on the used phase‐retrieval algorithm, especially when the intensity of the diffraction patterns in the high‐spatial‐frequency range is low and/or when the spatial overlap of the illumination area is small. In this paper, a phase‐retrieval algorithm, AMPAM, based on the Poisson model and total variation (TV) is proposed. It applies alternating minimization using primal‐dual splitting and gradient‐descent algorithms to compute the result without matrix inversion. The imaging capability of the proposed algorithm from low‐dose and/or sparsely scanned data was investigated by numerical simulations. The proposed algorithm was compared with ADPr, which is the state‐of‐the‐art algorithm based on the TV‐regularized Poisson model. The results indicated that AMPAM can provide good‐quality images with a computational cost 7–11 times less than ADPr. In addition, ink toner and macroporous silica particles were imaged at SPring‐8 BL24XU to confirm the applicability of the algorithm to actual measurements.
This paper presents a phase‐retrieval algorithm for ptychography, named AMPAM. The imaging capability of AMPAM was investigated by numerical simulations and measurements performed at SPring‐8. Hard X-ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X-ray beam and visualizes the complex-valued refractive index of the specimen by a computational reconstruction called phase retrieval. The quality of imaging is dependent on the used phase-retrieval algorithm, especially when the intensity of the diffraction patterns in the high-spatial-frequency range is low and/or when the spatial overlap of the illumination area is small. In this paper, a phase-retrieval algorithm, AMPAM, based on the Poisson model and total variation (TV) is proposed. It applies alternating minimization using primal-dual splitting and gradient-descent algorithms to compute the result without matrix inversion. The imaging capability of the proposed algorithm from low-dose and/or sparsely scanned data was investigated by numerical simulations. The proposed algorithm was compared with ADPr, which is the state-of-the-art algorithm based on the TV-regularized Poisson model. The results indicated that AMPAM can provide good-quality images with a computational cost 7–11 times less than ADPr. In addition, ink toner and macroporous silica particles were imaged at SPring-8 BL24XU to confirm the applicability of the algorithm to actual measurements. |
| Author | Yatabe, Kohei Takayama, Yuki |
| Author_xml | – sequence: 1 givenname: Kohei surname: Yatabe fullname: Yatabe, Kohei email: yatabe@go.tuat.ac.jp organization: Tokyo University of Agriculture and Technology – sequence: 2 givenname: Yuki surname: Takayama fullname: Takayama, Yuki organization: SPring-8 |
| BookMark | eNqFkM9KAzEQxoNUsFUfwFvAczXJZrPtUYp_ERT_gJ6WyW7Spmw3NUlb1pMHH8Bn9EnMWg-ioKf5Zvh9M8zXQ53a1gqhPUoOKCXZ4S0VhKSZyBiLlSV8A3XbUb-ddb7pLdTzfkoIbdEuer2egFfYqeCMWkKFZWxLbGsMONgA1fvL2xKcgWBsHbVT40UV--cIXVvjfSRntlQV1tbhh5aABs9DU0zs2MF8YgpsZjA29RhbjSu7ikhh6-DAB2zlVBXB76BNDZVXu191G92fHN-NzvqXV6fno6PLfpEQLvrAaZIqNlScDYqBlqVMUy6klFoPmKYDSQXliWYURAlC0aGGrIxKiyTRADLZRvvrvXNnnxbKh3xqF66OJ3MmhhkXPOUsUnRNFc5675TO5y6-4JqckrwNO_8VdvRkPzyFCZ-ZxUdN9adzuHauTKWa_0_lF6Mb9niTkkwkH5cym_M |
| CitedBy_id | crossref_primary_10_35848_1347_4065_ad2b1a crossref_primary_10_1107_S1600576724006897 crossref_primary_10_1107_S1600576724004709 |
| Cites_doi | 10.1073/pnas.2019068118 10.1007/s10851-010-0251-1 10.1364/OE.16.007264 10.1038/s42004-019-0147-y 10.1109/MSP.2014.2377273 10.1016/j.softx.2019.04.003 10.1103/PhysRevLett.97.215503 10.1126/sciadv.aau4548 10.1016/j.ultramic.2007.08.003 10.1016/j.ultramic.2009.05.012 10.1364/OE.17.019662 10.1038/s42005-021-00539-x 10.1364/OE.22.001452 10.1021/acsapm.9b00324 10.1038/nature23006 10.1016/j.elspec.2008.10.008 10.1039/D0CC06101H 10.1364/OE.378083 10.1063/1.4794063 10.1107/S1600577519017004 10.1107/S2052252519003774 10.1364/OE.22.012634 10.1364/JOSAA.23.001179 10.1006/adnd.1993.1013 10.1103/PhysRevB.94.064421 10.1364/OE.25.008593 10.1007/978-3-319-48311-5 10.1016/0167-2789(92)90242-F 10.7567/JJAP.52.06GB02 10.1364/OL.42.001133 10.1364/OE.27.010395 10.1016/j.jmb.2003.07.013 10.1364/OL.43.000543 |
| ContentType | Journal Article |
| Copyright | 2022 Yatabe and Takayama. published by IUCr Journals. Copyright Blackwell Publishing Ltd. Aug 2022 |
| Copyright_xml | – notice: 2022 Yatabe and Takayama. published by IUCr Journals. – notice: Copyright Blackwell Publishing Ltd. Aug 2022 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1107/S1600576722005234 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1600-5767 |
| EndPage | 992 |
| ExternalDocumentID | 10_1107_S1600576722005234 JCR2YR5076 |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 1Y6 29J 2WC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ H~9 I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCJ RIWAO RJQFR RNS ROL RX1 SUPJJ TN5 UB1 UPT V8K VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WYISQ XG1 YCJ YQT ZCG ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3046-a4135e29e428c8fbdb5546bbbff82f18b16143f21a6da6e19fa7dda6f633faab3 |
| IEDL.DBID | DRFUL |
| ISSN | 1600-5767 0021-8898 |
| IngestDate | Mon Nov 10 03:09:38 EST 2025 Sat Nov 29 01:54:54 EST 2025 Tue Nov 18 22:13:56 EST 2025 Wed Jan 22 16:25:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3046-a4135e29e428c8fbdb5546bbbff82f18b16143f21a6da6e19fa7dda6f633faab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3926-1094 0000-0002-1345-0663 |
| PQID | 2697464542 |
| PQPubID | 29562 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2697464542 crossref_primary_10_1107_S1600576722005234 crossref_citationtrail_10_1107_S1600576722005234 wiley_primary_10_1107_S1600576722005234_JCR2YR5076 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | 5 Abbey Square, Chester, Cheshire CH1 2HU, England |
| PublicationPlace_xml | – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England – name: Oxford |
| PublicationTitle | Journal of applied crystallography |
| PublicationYear | 2022 |
| Publisher | International Union of Crystallography Blackwell Publishing Ltd |
| Publisher_xml | – name: International Union of Crystallography – name: Blackwell Publishing Ltd |
| References | Hirose (yr5076_bb16) 2020; 28 Takahashi (yr5076_bb31) 2013; 102 Tripathi (yr5076_bb34) 2014; 22 Deng (yr5076_bb8) 2018; 4 Lo (yr5076_bb24) 2021; 118 Gao (yr5076_bb11) 2020; 56 Bunk (yr5076_bb2) 2008; 108 Villanueva-Perez (yr5076_bb36) 2017; 42 Takayama (yr5076_bb32) 2021; 4 Komodakis (yr5076_bb23) 2015; 32 Takayama (yr5076_bb33) 2020; FY2018 Huang (yr5076_bb21) 2014; 22 Chang (yr5076_bb4) 2019; 27 Henke (yr5076_bb15) 1993; 54 Chapman (yr5076_bb5) 2006; 23 Rudin (yr5076_bb30) 1992; 60 Guizar-Sicairos (yr5076_bb13) 2008; 16 Hirose (yr5076_bb19) 2020; 27 yr5076_bb40 Donnelly (yr5076_bb10) 2016; 94 Donnelly (yr5076_bb9) 2017; 547 Miao (yr5076_bb27) 2006; 97 Valzania (yr5076_bb35) 2018; 43 yr5076_bb37 Harada (yr5076_bb14) 2013; 52 Rosenthal (yr5076_bb29) 2003; 333 Chambolle (yr5076_bb3) 2011; 40 Hirose (yr5076_bb17) 2019; 2 Patil (yr5076_bb28) 2019; 1 Maiden (yr5076_bb25) 2009; 109 Cuesta (yr5076_bb7) 2019; 6 yr5076_bb6 Hirose (yr5076_bb18) 2017; 25 Matsushima (yr5076_bb26) 2009; 17 yr5076_bb12 Howells (yr5076_bb20) 2009; 170 Kazantsev (yr5076_bb22) 2019; 9 yr5076_bb1 |
| References_xml | – volume: 118 start-page: e2019068118 year: 2021 ident: yr5076_bb24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2019068118 – volume: 40 start-page: 120 year: 2011 ident: yr5076_bb3 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – ident: yr5076_bb6 – volume: 16 start-page: 7264 year: 2008 ident: yr5076_bb13 publication-title: Opt. Express doi: 10.1364/OE.16.007264 – volume: 2 start-page: 50 year: 2019 ident: yr5076_bb17 publication-title: Commun. Chem. doi: 10.1038/s42004-019-0147-y – volume: 32 start-page: 31 year: 2015 ident: yr5076_bb23 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2377273 – volume: 9 start-page: 317 year: 2019 ident: yr5076_bb22 publication-title: SoftwareX doi: 10.1016/j.softx.2019.04.003 – volume: 97 start-page: 215503 year: 2006 ident: yr5076_bb27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.215503 – ident: yr5076_bb40 – volume: 4 start-page: eaau4548 year: 2018 ident: yr5076_bb8 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau4548 – volume: 108 start-page: 481 year: 2008 ident: yr5076_bb2 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2007.08.003 – ident: yr5076_bb12 – volume: 109 start-page: 1256 year: 2009 ident: yr5076_bb25 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2009.05.012 – ident: yr5076_bb37 – volume: 17 start-page: 19662 year: 2009 ident: yr5076_bb26 publication-title: Opt. Express doi: 10.1364/OE.17.019662 – volume: 4 start-page: 48 year: 2021 ident: yr5076_bb32 publication-title: Commun. Phys. doi: 10.1038/s42005-021-00539-x – volume: 22 start-page: 1452 year: 2014 ident: yr5076_bb34 publication-title: Opt. Express doi: 10.1364/OE.22.001452 – volume: 1 start-page: 1787 year: 2019 ident: yr5076_bb28 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00324 – volume: 547 start-page: 328 year: 2017 ident: yr5076_bb9 publication-title: Nature doi: 10.1038/nature23006 – volume: 170 start-page: 4 year: 2009 ident: yr5076_bb20 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2008.10.008 – volume: 56 start-page: 13373 year: 2020 ident: yr5076_bb11 publication-title: Chem. Commun. doi: 10.1039/D0CC06101H – volume: 28 start-page: 1216 year: 2020 ident: yr5076_bb16 publication-title: Opt. Express doi: 10.1364/OE.378083 – volume: 102 start-page: 094102 year: 2013 ident: yr5076_bb31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4794063 – volume: 27 start-page: 455 year: 2020 ident: yr5076_bb19 publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577519017004 – volume: 6 start-page: 473 year: 2019 ident: yr5076_bb7 publication-title: IUCrJ doi: 10.1107/S2052252519003774 – volume: 22 start-page: 12634 year: 2014 ident: yr5076_bb21 publication-title: Opt. Express doi: 10.1364/OE.22.012634 – volume: FY2018 start-page: 132 year: 2020 ident: yr5076_bb33 publication-title: SPring-8/SACLA Annu. Rep. – volume: 23 start-page: 1179 year: 2006 ident: yr5076_bb5 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.23.001179 – volume: 54 start-page: 181 year: 1993 ident: yr5076_bb15 publication-title: At. Data Nucl. Data Tables doi: 10.1006/adnd.1993.1013 – volume: 94 start-page: 064421 year: 2016 ident: yr5076_bb10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.064421 – volume: 25 start-page: 8593 year: 2017 ident: yr5076_bb18 publication-title: Opt. Express doi: 10.1364/OE.25.008593 – ident: yr5076_bb1 doi: 10.1007/978-3-319-48311-5 – volume: 60 start-page: 259 year: 1992 ident: yr5076_bb30 publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – volume: 52 start-page: 06GB02 year: 2013 ident: yr5076_bb14 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.06GB02 – volume: 42 start-page: 1133 year: 2017 ident: yr5076_bb36 publication-title: Opt. Lett. doi: 10.1364/OL.42.001133 – volume: 27 start-page: 10395 year: 2019 ident: yr5076_bb4 publication-title: Opt. Express doi: 10.1364/OE.27.010395 – volume: 333 start-page: 721 year: 2003 ident: yr5076_bb29 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 43 start-page: 543 year: 2018 ident: yr5076_bb35 publication-title: Opt. Lett. doi: 10.1364/OL.43.000543 |
| SSID | ssj0016722 |
| Score | 2.3794732 |
| Snippet | Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by... Hard X-ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 978 |
| SubjectTerms | Algorithms Computer applications Computing costs Diffraction Diffraction patterns Frequency dependence Frequency ranges hard X‐ray ptychography Image quality Image reconstruction Mathematical models Phase retrieval photon noise removal Refractivity Silica total variation |
| Title | Phase retrieval based on a total‐variation‐regularized Poisson model for X‐ray ptychographic imaging of low‐contrast objects |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576722005234 https://www.proquest.com/docview/2697464542 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1600-5767 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016722 issn: 1600-5767 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXrwLb7JwZNQ3KY12x5ldRERWdYH66kkaYIL61a6VdGTB3-Av9Ff4ky2uyqCgnhqDjNp6SSZbzIvgO2UG9SKfuRFupJ6oYqVJ00lpGy0FAF-GBkXVXl5Uj09jVqtuDECtUEuTL8-xPDCjXaGO69pg0tVdiFxfv0zX1AmpahyVzwoCEdhnJKr0AIbP2jWL06GzgTRr4dI9B4xlM5NnGb32yRf1dMH5vyMXJ3qqc_-y0fPwUyJPNl-f6nMw4jpLsBkbdDwbQGmP9UmXISXxjUqOJa7jlu4HBnpu5RlXSZZkSFkf3t-vUdD20kWx7lrap-3n5CokaE4kdK12WEIi1mLKOQjuy3ovHVVstuatW9cjySWWdbJHpDEBc7LXsEyRfdDvSW4qB-e1468smWDp8nF6knUiXuGxwatGh1ZlSqKglNKWRtx60cKAWYYWO5LkUph_NjKaoojK4LASqmCZRjrZl2zAkzoWAmEc6nRltyz0oo9hawaAa3A5ypUBpJKdFnPnNpqdBJn11SqybefvQo7Q5bbfjGPn4g3BuJPyn3dS7hA-4uKoOHruRP07xMlx7Umv2oi8BZrf2FahylOORcu6nADxor8zmzChL4v2r18q1zs74EWAJQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED6xggQ8AGObYDDww56QojVOcJLHqVAxKFXVAeqeItuxtUqsQWkAwRMP_AB-437J7py0MCExCe0pfrhzopzP953PdwfwOeMGraIfe7FuZl6oEuVJ0wwpGy1DgB_Gxt2qPOtE3W48GCS9Gdib5MJU9SGmB26kGW6_JgWnA-lKy11g_7svKJVSRNxVDwrCNzAbiiCKGzC712-fdqbRBFEVRCR6jxjq6CZO8-XZJH_bp0fQ-RS6OtvTXv4_X70CSzX2ZF-rxfIWZsxoFeZbk5Zvq7D4pDrhO7jv_UQTxwrXcwsXJCOLl7F8xCQrcwTtv-8ertDVdrLFceHa2hfDWyTq5ShQpHSNdhgCYzYgCnnDLkracV2d7KFmw1-uSxLLLTvPr5HEXZ2X45Llik6Ixu_htL1_0jrw6qYNnqYgqyfRKu4anhj0a3RsVaboHpxSytqYWz9WCDHDwHJfikwK4ydWRhmOrAgCK6UKPkBjlI_MGjChEyUQ0GVGWwrQSit2FbJqhLQCn-vQnIgq1XVFc2qscZ46z6YZpc9-9jrsTFkuqnIeLxFvTuSf1po9TrlAD4zKoOHruZP0vydKD1t9_qOP0Ft8fA3TNswfnBx30s637tEGLHDKwHB3EDehURaX5hPM6atyOC626pX_B-HIBIQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BQDwOLU9BS9s99IRkEa-djX1ECVEfURSFh8LJ2qeIFOLIMSA4ceAH8Bv5JZ1dOykVEkioJ-9hZm15dna-3XkBfFdUo1X0Iy-SVeWFIhYe19XQZqMpBPhhpF1U5Vm73ulE_X7cnYPmNBemqA8xu3CzmuH2a6vgeqxMoeXOsX_sM5tKyerUVQ8KwnlYCGtxLazAQrPXOm3PvAmsKIho6T3LUHo3cZqDF5P8a5_-gs7n0NXZntbH__PVa_ChxJ7ksFgs6zCnRxuw3Ji2fNuA1WfVCTfhoXuBJo5krucWLkhiLZ4i6YhwkqcI2p_uH6_xqO1ki-PMtbXPBndI1E1RoEjpGu0QBMakbyn4LRnndsd1dbIHkgwuXZckkhoyTG-QxIXO80lOUmFviCZbcNo6Omn88MqmDZ60TlaPo1WsaRprPNfIyAglbBycEMKYiBo_Eggxw8BQnzPFmfZjw-sKR4YFgeFcBNtQGaUjvQOEyVgwBHRKS2MdtNywmkBWiZCW4XMXqlNRJbKsaG4bawwTd7Kp1pMXP3sX9mcs46Kcx2vEe1P5J6VmTxLK8ARmy6Dh66mT9NsTJb8aPXreQ-jNPr2H6RssdZutpP2z8_szrFCbgOFCEPegkmdX-gssyut8MMm-lgv_D2UVA_8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+retrieval+based+on+a+total%E2%80%90variation%E2%80%90regularized+Poisson+model+for+X%E2%80%90ray+ptychographic+imaging+of+low%E2%80%90contrast+objects&rft.jtitle=Journal+of+applied+crystallography&rft.au=Yatabe%2C+Kohei&rft.au=Takayama%2C+Yuki&rft.date=2022-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8898&rft.eissn=1600-5767&rft.volume=55&rft.issue=4&rft.spage=978&rft.epage=992&rft_id=info:doi/10.1107%2FS1600576722005234&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5767&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5767&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5767&client=summon |