Phase retrieval based on a total‐variation‐regularized Poisson model for X‐ray ptychographic imaging of low‐contrast objects

Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X‐ray beam and visualizes the complex‐valued refractive index of the specimen by a computational reconstruction called phase retrieval...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied crystallography Ročník 55; číslo 4; s. 978 - 992
Hlavní autoři: Yatabe, Kohei, Takayama, Yuki
Médium: Journal Article
Jazyk:angličtina
Vydáno: 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.08.2022
Blackwell Publishing Ltd
Témata:
ISSN:1600-5767, 0021-8898, 1600-5767
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X‐ray beam and visualizes the complex‐valued refractive index of the specimen by a computational reconstruction called phase retrieval. The quality of imaging is dependent on the used phase‐retrieval algorithm, especially when the intensity of the diffraction patterns in the high‐spatial‐frequency range is low and/or when the spatial overlap of the illumination area is small. In this paper, a phase‐retrieval algorithm, AMPAM, based on the Poisson model and total variation (TV) is proposed. It applies alternating minimization using primal‐dual splitting and gradient‐descent algorithms to compute the result without matrix inversion. The imaging capability of the proposed algorithm from low‐dose and/or sparsely scanned data was investigated by numerical simulations. The proposed algorithm was compared with ADPr, which is the state‐of‐the‐art algorithm based on the TV‐regularized Poisson model. The results indicated that AMPAM can provide good‐quality images with a computational cost 7–11 times less than ADPr. In addition, ink toner and macroporous silica particles were imaged at SPring‐8 BL24XU to confirm the applicability of the algorithm to actual measurements. This paper presents a phase‐retrieval algorithm for ptychography, named AMPAM. The imaging capability of AMPAM was investigated by numerical simulations and measurements performed at SPring‐8.
AbstractList Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X‐ray beam and visualizes the complex‐valued refractive index of the specimen by a computational reconstruction called phase retrieval. The quality of imaging is dependent on the used phase‐retrieval algorithm, especially when the intensity of the diffraction patterns in the high‐spatial‐frequency range is low and/or when the spatial overlap of the illumination area is small. In this paper, a phase‐retrieval algorithm, AMPAM, based on the Poisson model and total variation (TV) is proposed. It applies alternating minimization using primal‐dual splitting and gradient‐descent algorithms to compute the result without matrix inversion. The imaging capability of the proposed algorithm from low‐dose and/or sparsely scanned data was investigated by numerical simulations. The proposed algorithm was compared with ADPr, which is the state‐of‐the‐art algorithm based on the TV‐regularized Poisson model. The results indicated that AMPAM can provide good‐quality images with a computational cost 7–11 times less than ADPr. In addition, ink toner and macroporous silica particles were imaged at SPring‐8 BL24XU to confirm the applicability of the algorithm to actual measurements. This paper presents a phase‐retrieval algorithm for ptychography, named AMPAM. The imaging capability of AMPAM was investigated by numerical simulations and measurements performed at SPring‐8.
Hard X-ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by scanning an X-ray beam and visualizes the complex-valued refractive index of the specimen by a computational reconstruction called phase retrieval. The quality of imaging is dependent on the used phase-retrieval algorithm, especially when the intensity of the diffraction patterns in the high-spatial-frequency range is low and/or when the spatial overlap of the illumination area is small. In this paper, a phase-retrieval algorithm, AMPAM, based on the Poisson model and total variation (TV) is proposed. It applies alternating minimization using primal-dual splitting and gradient-descent algorithms to compute the result without matrix inversion. The imaging capability of the proposed algorithm from low-dose and/or sparsely scanned data was investigated by numerical simulations. The proposed algorithm was compared with ADPr, which is the state-of-the-art algorithm based on the TV-regularized Poisson model. The results indicated that AMPAM can provide good-quality images with a computational cost 7–11 times less than ADPr. In addition, ink toner and macroporous silica particles were imaged at SPring-8 BL24XU to confirm the applicability of the algorithm to actual measurements.
Author Yatabe, Kohei
Takayama, Yuki
Author_xml – sequence: 1
  givenname: Kohei
  surname: Yatabe
  fullname: Yatabe, Kohei
  email: yatabe@go.tuat.ac.jp
  organization: Tokyo University of Agriculture and Technology
– sequence: 2
  givenname: Yuki
  surname: Takayama
  fullname: Takayama, Yuki
  organization: SPring-8
BookMark eNqFkM9KAzEQxoNUsFUfwFvAczXJZrPtUYp_ERT_gJ6WyW7Spmw3NUlb1pMHH8Bn9EnMWg-ioKf5Zvh9M8zXQ53a1gqhPUoOKCXZ4S0VhKSZyBiLlSV8A3XbUb-ddb7pLdTzfkoIbdEuer2egFfYqeCMWkKFZWxLbGsMONgA1fvL2xKcgWBsHbVT40UV--cIXVvjfSRntlQV1tbhh5aABs9DU0zs2MF8YgpsZjA29RhbjSu7ikhh6-DAB2zlVBXB76BNDZVXu191G92fHN-NzvqXV6fno6PLfpEQLvrAaZIqNlScDYqBlqVMUy6klFoPmKYDSQXliWYURAlC0aGGrIxKiyTRADLZRvvrvXNnnxbKh3xqF66OJ3MmhhkXPOUsUnRNFc5675TO5y6-4JqckrwNO_8VdvRkPzyFCZ-ZxUdN9adzuHauTKWa_0_lF6Mb9niTkkwkH5cym_M
CitedBy_id crossref_primary_10_35848_1347_4065_ad2b1a
crossref_primary_10_1107_S1600576724006897
crossref_primary_10_1107_S1600576724004709
Cites_doi 10.1073/pnas.2019068118
10.1007/s10851-010-0251-1
10.1364/OE.16.007264
10.1038/s42004-019-0147-y
10.1109/MSP.2014.2377273
10.1016/j.softx.2019.04.003
10.1103/PhysRevLett.97.215503
10.1126/sciadv.aau4548
10.1016/j.ultramic.2007.08.003
10.1016/j.ultramic.2009.05.012
10.1364/OE.17.019662
10.1038/s42005-021-00539-x
10.1364/OE.22.001452
10.1021/acsapm.9b00324
10.1038/nature23006
10.1016/j.elspec.2008.10.008
10.1039/D0CC06101H
10.1364/OE.378083
10.1063/1.4794063
10.1107/S1600577519017004
10.1107/S2052252519003774
10.1364/OE.22.012634
10.1364/JOSAA.23.001179
10.1006/adnd.1993.1013
10.1103/PhysRevB.94.064421
10.1364/OE.25.008593
10.1007/978-3-319-48311-5
10.1016/0167-2789(92)90242-F
10.7567/JJAP.52.06GB02
10.1364/OL.42.001133
10.1364/OE.27.010395
10.1016/j.jmb.2003.07.013
10.1364/OL.43.000543
ContentType Journal Article
Copyright 2022 Yatabe and Takayama. published by IUCr Journals.
Copyright Blackwell Publishing Ltd. Aug 2022
Copyright_xml – notice: 2022 Yatabe and Takayama. published by IUCr Journals.
– notice: Copyright Blackwell Publishing Ltd. Aug 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1107/S1600576722005234
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1600-5767
EndPage 992
ExternalDocumentID 10_1107_S1600576722005234
JCR2YR5076
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
1Y6
29J
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
H~9
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCJ
RIWAO
RJQFR
RNS
ROL
RX1
SUPJJ
TN5
UB1
UPT
V8K
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
XG1
YCJ
YQT
ZCG
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3046-a4135e29e428c8fbdb5546bbbff82f18b16143f21a6da6e19fa7dda6f633faab3
IEDL.DBID DRFUL
ISSN 1600-5767
0021-8898
IngestDate Mon Nov 10 03:09:38 EST 2025
Sat Nov 29 01:54:54 EST 2025
Tue Nov 18 22:13:56 EST 2025
Wed Jan 22 16:25:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3046-a4135e29e428c8fbdb5546bbbff82f18b16143f21a6da6e19fa7dda6f633faab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3926-1094
0000-0002-1345-0663
PQID 2697464542
PQPubID 29562
PageCount 15
ParticipantIDs proquest_journals_2697464542
crossref_primary_10_1107_S1600576722005234
crossref_citationtrail_10_1107_S1600576722005234
wiley_primary_10_1107_S1600576722005234_JCR2YR5076
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: Oxford
PublicationTitle Journal of applied crystallography
PublicationYear 2022
Publisher International Union of Crystallography
Blackwell Publishing Ltd
Publisher_xml – name: International Union of Crystallography
– name: Blackwell Publishing Ltd
References Hirose (yr5076_bb16) 2020; 28
Takahashi (yr5076_bb31) 2013; 102
Tripathi (yr5076_bb34) 2014; 22
Deng (yr5076_bb8) 2018; 4
Lo (yr5076_bb24) 2021; 118
Gao (yr5076_bb11) 2020; 56
Bunk (yr5076_bb2) 2008; 108
Villanueva-Perez (yr5076_bb36) 2017; 42
Takayama (yr5076_bb32) 2021; 4
Komodakis (yr5076_bb23) 2015; 32
Takayama (yr5076_bb33) 2020; FY2018
Huang (yr5076_bb21) 2014; 22
Chang (yr5076_bb4) 2019; 27
Henke (yr5076_bb15) 1993; 54
Chapman (yr5076_bb5) 2006; 23
Rudin (yr5076_bb30) 1992; 60
Guizar-Sicairos (yr5076_bb13) 2008; 16
Hirose (yr5076_bb19) 2020; 27
yr5076_bb40
Donnelly (yr5076_bb10) 2016; 94
Donnelly (yr5076_bb9) 2017; 547
Miao (yr5076_bb27) 2006; 97
Valzania (yr5076_bb35) 2018; 43
yr5076_bb37
Harada (yr5076_bb14) 2013; 52
Rosenthal (yr5076_bb29) 2003; 333
Chambolle (yr5076_bb3) 2011; 40
Hirose (yr5076_bb17) 2019; 2
Patil (yr5076_bb28) 2019; 1
Maiden (yr5076_bb25) 2009; 109
Cuesta (yr5076_bb7) 2019; 6
yr5076_bb6
Hirose (yr5076_bb18) 2017; 25
Matsushima (yr5076_bb26) 2009; 17
yr5076_bb12
Howells (yr5076_bb20) 2009; 170
Kazantsev (yr5076_bb22) 2019; 9
yr5076_bb1
References_xml – volume: 118
  start-page: e2019068118
  year: 2021
  ident: yr5076_bb24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2019068118
– volume: 40
  start-page: 120
  year: 2011
  ident: yr5076_bb3
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– ident: yr5076_bb6
– volume: 16
  start-page: 7264
  year: 2008
  ident: yr5076_bb13
  publication-title: Opt. Express
  doi: 10.1364/OE.16.007264
– volume: 2
  start-page: 50
  year: 2019
  ident: yr5076_bb17
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0147-y
– volume: 32
  start-page: 31
  year: 2015
  ident: yr5076_bb23
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2377273
– volume: 9
  start-page: 317
  year: 2019
  ident: yr5076_bb22
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2019.04.003
– volume: 97
  start-page: 215503
  year: 2006
  ident: yr5076_bb27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.215503
– ident: yr5076_bb40
– volume: 4
  start-page: eaau4548
  year: 2018
  ident: yr5076_bb8
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau4548
– volume: 108
  start-page: 481
  year: 2008
  ident: yr5076_bb2
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2007.08.003
– ident: yr5076_bb12
– volume: 109
  start-page: 1256
  year: 2009
  ident: yr5076_bb25
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2009.05.012
– ident: yr5076_bb37
– volume: 17
  start-page: 19662
  year: 2009
  ident: yr5076_bb26
  publication-title: Opt. Express
  doi: 10.1364/OE.17.019662
– volume: 4
  start-page: 48
  year: 2021
  ident: yr5076_bb32
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-021-00539-x
– volume: 22
  start-page: 1452
  year: 2014
  ident: yr5076_bb34
  publication-title: Opt. Express
  doi: 10.1364/OE.22.001452
– volume: 1
  start-page: 1787
  year: 2019
  ident: yr5076_bb28
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00324
– volume: 547
  start-page: 328
  year: 2017
  ident: yr5076_bb9
  publication-title: Nature
  doi: 10.1038/nature23006
– volume: 170
  start-page: 4
  year: 2009
  ident: yr5076_bb20
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2008.10.008
– volume: 56
  start-page: 13373
  year: 2020
  ident: yr5076_bb11
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC06101H
– volume: 28
  start-page: 1216
  year: 2020
  ident: yr5076_bb16
  publication-title: Opt. Express
  doi: 10.1364/OE.378083
– volume: 102
  start-page: 094102
  year: 2013
  ident: yr5076_bb31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4794063
– volume: 27
  start-page: 455
  year: 2020
  ident: yr5076_bb19
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577519017004
– volume: 6
  start-page: 473
  year: 2019
  ident: yr5076_bb7
  publication-title: IUCrJ
  doi: 10.1107/S2052252519003774
– volume: 22
  start-page: 12634
  year: 2014
  ident: yr5076_bb21
  publication-title: Opt. Express
  doi: 10.1364/OE.22.012634
– volume: FY2018
  start-page: 132
  year: 2020
  ident: yr5076_bb33
  publication-title: SPring-8/SACLA Annu. Rep.
– volume: 23
  start-page: 1179
  year: 2006
  ident: yr5076_bb5
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.23.001179
– volume: 54
  start-page: 181
  year: 1993
  ident: yr5076_bb15
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1006/adnd.1993.1013
– volume: 94
  start-page: 064421
  year: 2016
  ident: yr5076_bb10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.064421
– volume: 25
  start-page: 8593
  year: 2017
  ident: yr5076_bb18
  publication-title: Opt. Express
  doi: 10.1364/OE.25.008593
– ident: yr5076_bb1
  doi: 10.1007/978-3-319-48311-5
– volume: 60
  start-page: 259
  year: 1992
  ident: yr5076_bb30
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 52
  start-page: 06GB02
  year: 2013
  ident: yr5076_bb14
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.06GB02
– volume: 42
  start-page: 1133
  year: 2017
  ident: yr5076_bb36
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.001133
– volume: 27
  start-page: 10395
  year: 2019
  ident: yr5076_bb4
  publication-title: Opt. Express
  doi: 10.1364/OE.27.010395
– volume: 333
  start-page: 721
  year: 2003
  ident: yr5076_bb29
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.07.013
– volume: 43
  start-page: 543
  year: 2018
  ident: yr5076_bb35
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.000543
SSID ssj0016722
Score 2.3794732
Snippet Hard X‐ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by...
Hard X-ray ptychography has become an indispensable tool for observing the microscopic structure of a thick specimen. It measures diffraction patterns by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 978
SubjectTerms Algorithms
Computer applications
Computing costs
Diffraction
Diffraction patterns
Frequency dependence
Frequency ranges
hard X‐ray ptychography
Image quality
Image reconstruction
Mathematical models
Phase retrieval
photon noise removal
Refractivity
Silica
total variation
Title Phase retrieval based on a total‐variation‐regularized Poisson model for X‐ray ptychographic imaging of low‐contrast objects
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576722005234
https://www.proquest.com/docview/2697464542
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1600-5767
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016722
  issn: 1600-5767
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXrwLb7JwZNQ3KY12x5ldRERWdYH66kkaYIL61a6VdGTB3-Av9Ff4ky2uyqCgnhqDjNp6SSZbzIvgO2UG9SKfuRFupJ6oYqVJ00lpGy0FAF-GBkXVXl5Uj09jVqtuDECtUEuTL8-xPDCjXaGO69pg0tVdiFxfv0zX1AmpahyVzwoCEdhnJKr0AIbP2jWL06GzgTRr4dI9B4xlM5NnGb32yRf1dMH5vyMXJ3qqc_-y0fPwUyJPNl-f6nMw4jpLsBkbdDwbQGmP9UmXISXxjUqOJa7jlu4HBnpu5RlXSZZkSFkf3t-vUdD20kWx7lrap-3n5CokaE4kdK12WEIi1mLKOQjuy3ovHVVstuatW9cjySWWdbJHpDEBc7LXsEyRfdDvSW4qB-e1468smWDp8nF6knUiXuGxwatGh1ZlSqKglNKWRtx60cKAWYYWO5LkUph_NjKaoojK4LASqmCZRjrZl2zAkzoWAmEc6nRltyz0oo9hawaAa3A5ypUBpJKdFnPnNpqdBJn11SqybefvQo7Q5bbfjGPn4g3BuJPyn3dS7hA-4uKoOHruRP07xMlx7Umv2oi8BZrf2FahylOORcu6nADxor8zmzChL4v2r18q1zs74EWAJQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED6xggQ8AGObYDDww56QojVOcJLHqVAxKFXVAeqeItuxtUqsQWkAwRMP_AB-437J7py0MCExCe0pfrhzopzP953PdwfwOeMGraIfe7FuZl6oEuVJ0wwpGy1DgB_Gxt2qPOtE3W48GCS9Gdib5MJU9SGmB26kGW6_JgWnA-lKy11g_7svKJVSRNxVDwrCNzAbiiCKGzC712-fdqbRBFEVRCR6jxjq6CZO8-XZJH_bp0fQ-RS6OtvTXv4_X70CSzX2ZF-rxfIWZsxoFeZbk5Zvq7D4pDrhO7jv_UQTxwrXcwsXJCOLl7F8xCQrcwTtv-8ertDVdrLFceHa2hfDWyTq5ShQpHSNdhgCYzYgCnnDLkracV2d7KFmw1-uSxLLLTvPr5HEXZ2X45Llik6Ixu_htL1_0jrw6qYNnqYgqyfRKu4anhj0a3RsVaboHpxSytqYWz9WCDHDwHJfikwK4ydWRhmOrAgCK6UKPkBjlI_MGjChEyUQ0GVGWwrQSit2FbJqhLQCn-vQnIgq1XVFc2qscZ46z6YZpc9-9jrsTFkuqnIeLxFvTuSf1po9TrlAD4zKoOHruZP0vydKD1t9_qOP0Ft8fA3TNswfnBx30s637tEGLHDKwHB3EDehURaX5hPM6atyOC626pX_B-HIBIQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BQDwOLU9BS9s99IRkEa-djX1ECVEfURSFh8LJ2qeIFOLIMSA4ceAH8Bv5JZ1dOykVEkioJ-9hZm15dna-3XkBfFdUo1X0Iy-SVeWFIhYe19XQZqMpBPhhpF1U5Vm73ulE_X7cnYPmNBemqA8xu3CzmuH2a6vgeqxMoeXOsX_sM5tKyerUVQ8KwnlYCGtxLazAQrPXOm3PvAmsKIho6T3LUHo3cZqDF5P8a5_-gs7n0NXZntbH__PVa_ChxJ7ksFgs6zCnRxuw3Ji2fNuA1WfVCTfhoXuBJo5krucWLkhiLZ4i6YhwkqcI2p_uH6_xqO1ki-PMtbXPBndI1E1RoEjpGu0QBMakbyn4LRnndsd1dbIHkgwuXZckkhoyTG-QxIXO80lOUmFviCZbcNo6Omn88MqmDZ60TlaPo1WsaRprPNfIyAglbBycEMKYiBo_Eggxw8BQnzPFmfZjw-sKR4YFgeFcBNtQGaUjvQOEyVgwBHRKS2MdtNywmkBWiZCW4XMXqlNRJbKsaG4bawwTd7Kp1pMXP3sX9mcs46Kcx2vEe1P5J6VmTxLK8ARmy6Dh66mT9NsTJb8aPXreQ-jNPr2H6RssdZutpP2z8_szrFCbgOFCEPegkmdX-gssyut8MMm-lgv_D2UVA_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+retrieval+based+on+a+total%E2%80%90variation%E2%80%90regularized+Poisson+model+for+X%E2%80%90ray+ptychographic+imaging+of+low%E2%80%90contrast+objects&rft.jtitle=Journal+of+applied+crystallography&rft.au=Yatabe%2C+Kohei&rft.au=Takayama%2C+Yuki&rft.date=2022-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8898&rft.eissn=1600-5767&rft.volume=55&rft.issue=4&rft.spage=978&rft.epage=992&rft_id=info:doi/10.1107%2FS1600576722005234&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5767&client=summon