Fault Detection and Diagnosis for Sensor in Complex Control System Based on KPCA

The Fault detection and diagnosis for sensors are important for the performance of the complex control system seriously. The kernel principal component analysis (KPCA) effectively captures the nonlinear relationship of the process variables, which computes principal component in high-dimensional fea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Mechanics and Materials Ročník 623; číslo Engineering Research and Designing for Industry; s. 202 - 210
Hlavní autori: Wang, Qiu Yan, Xu, Ping, Wang, Kai, Wang, You Cai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Zurich Trans Tech Publications Ltd 01.08.2014
Predmet:
ISBN:9783038352228, 3038352225
ISSN:1660-9336, 1662-7482, 1662-7482
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Fault detection and diagnosis for sensors are important for the performance of the complex control system seriously. The kernel principal component analysis (KPCA) effectively captures the nonlinear relationship of the process variables, which computes principal component in high-dimensional feature space by means of integral operators and nonlinear kernel functions. The KPCA method is used in diagnosing for four common sensor faults. At first its fault is detected by Q statistic; secondly its fault is identified by T2 contribution percent change. The simulation and the practical result show the KPCA method has good performance on complex control system in sensor fault detection and diagnosis.
Bibliografia:Selected, peer reviewed papers from the 2013 International Conference on Mechatronics and Materials Engineering (ICMME 2013), May 25-27, 2013, Qiqihar, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISBN:9783038352228
3038352225
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.623.202