Symbolic algorithms for the inverses of general k-tridiagonal matrices

Two symbolic algorithms for inverting k-tridiagonal matrices have been recently found by El-Mikkawy and Atlan (2014, 2015). These two algorithms are mainly based on the Doolittle LU factorization of the k-tridiagonal matrix. In the current paper, we present a new explicit analytic expression for the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 70; číslo 12; s. 3032 - 3042
Hlavní autoři: Jia, Jiteng, Li, Sumei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2015
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Two symbolic algorithms for inverting k-tridiagonal matrices have been recently found by El-Mikkawy and Atlan (2014, 2015). These two algorithms are mainly based on the Doolittle LU factorization of the k-tridiagonal matrix. In the current paper, we present a new explicit analytic expression for the inverses of general tridiagonal matrices at first. By using a block diagonalization technique, we then relate k-tridiagonal matrix inversion to tridiagonal matrix inversion. Meanwhile, an efficient algorithm is derived for computing the inverses of nonsingular k-tridiagonal matrices with the help of any algorithm for computing the inverses of tridiagonal matrices. Three examples are given in order to illustrate the performance and efficiency of the proposed algorithms.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2015.10.018