Symbolic algorithms for the inverses of general k-tridiagonal matrices

Two symbolic algorithms for inverting k-tridiagonal matrices have been recently found by El-Mikkawy and Atlan (2014, 2015). These two algorithms are mainly based on the Doolittle LU factorization of the k-tridiagonal matrix. In the current paper, we present a new explicit analytic expression for the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & mathematics with applications (1987) Ročník 70; číslo 12; s. 3032 - 3042
Hlavní autori: Jia, Jiteng, Li, Sumei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2015
Predmet:
ISSN:0898-1221, 1873-7668
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Two symbolic algorithms for inverting k-tridiagonal matrices have been recently found by El-Mikkawy and Atlan (2014, 2015). These two algorithms are mainly based on the Doolittle LU factorization of the k-tridiagonal matrix. In the current paper, we present a new explicit analytic expression for the inverses of general tridiagonal matrices at first. By using a block diagonalization technique, we then relate k-tridiagonal matrix inversion to tridiagonal matrix inversion. Meanwhile, an efficient algorithm is derived for computing the inverses of nonsingular k-tridiagonal matrices with the help of any algorithm for computing the inverses of tridiagonal matrices. Three examples are given in order to illustrate the performance and efficiency of the proposed algorithms.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2015.10.018