GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs

Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of nonlinear partial differential equations (PDEs) leveraging the expressivity of deep neural networks and the computing power of modern heterogeneous hardware. However, its training is still t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite elements in analysis and design Jg. 228; S. 104047
Hauptverfasser: Chen, Yanlai, Koohy, Shawn
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2024
Schlagworte:
ISSN:0168-874X, 1872-6925
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of nonlinear partial differential equations (PDEs) leveraging the expressivity of deep neural networks and the computing power of modern heterogeneous hardware. However, its training is still time-consuming, especially in the multi-query and real-time simulation settings, and its parameterization often overly excessive. In this paper, we propose the Generative Pre-Trained PINN (GPT-PINN) to mitigate both challenges in the setting of parametric PDEs. GPT-PINN represents a brand-new meta-learning paradigm for parametric systems. As a network of networks, its outer-/meta-network is hyper-reduced with only one hidden layer having significantly reduced number of neurons. Moreover, its activation function at each hidden neuron is a (full) PINN pre-trained at a judiciously selected system configuration. The meta-network adaptively “learns” the parametric dependence of the system and “grows” this hidden layer one neuron at a time. In the end, by encompassing a very small number of networks trained at this set of adaptively-selected parameter values, the meta-network is capable of generating surrogate solutions for the parametric system across the entire parameter domain accurately and efficiently. •The use of whole pre-trained networks as the activation functions of another network•A network of networks that is adaptively generated•The adoption of the training loss of the meta-network as an error indicator•The adaptation of the classical greedy algorithm to the neural network setting
AbstractList Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of nonlinear partial differential equations (PDEs) leveraging the expressivity of deep neural networks and the computing power of modern heterogeneous hardware. However, its training is still time-consuming, especially in the multi-query and real-time simulation settings, and its parameterization often overly excessive. In this paper, we propose the Generative Pre-Trained PINN (GPT-PINN) to mitigate both challenges in the setting of parametric PDEs. GPT-PINN represents a brand-new meta-learning paradigm for parametric systems. As a network of networks, its outer-/meta-network is hyper-reduced with only one hidden layer having significantly reduced number of neurons. Moreover, its activation function at each hidden neuron is a (full) PINN pre-trained at a judiciously selected system configuration. The meta-network adaptively “learns” the parametric dependence of the system and “grows” this hidden layer one neuron at a time. In the end, by encompassing a very small number of networks trained at this set of adaptively-selected parameter values, the meta-network is capable of generating surrogate solutions for the parametric system across the entire parameter domain accurately and efficiently. •The use of whole pre-trained networks as the activation functions of another network•A network of networks that is adaptively generated•The adoption of the training loss of the meta-network as an error indicator•The adaptation of the classical greedy algorithm to the neural network setting
ArticleNumber 104047
Author Koohy, Shawn
Chen, Yanlai
Author_xml – sequence: 1
  givenname: Yanlai
  orcidid: 0000-0002-7460-8313
  surname: Chen
  fullname: Chen, Yanlai
  email: yanlai.chen@umassd.edu
– sequence: 2
  givenname: Shawn
  surname: Koohy
  fullname: Koohy, Shawn
  email: skoohy@umassd.edu
BookMark eNqFkMFqGzEQhkVJoI6TJ-hlX0CutNqVV4Ueips4BsfZgwu9CUWabeWstWak2PjtI9c95ZCcBn7m-5n5rshFGAIQ8oWzCWdcft1MOh-gn5SsFDmpWDX9REa8mZZUqrK-IKO81dBmWv3-TK5i3DDG6lJWI3KYt2vaLlarb8UcAqBJfg9Fi0DXaHKnK9q_x-htpIvQDbjNwQpe0PR5pMOAz7FIw8GgK_JJ1IeEL_HU8ADJ0B4MBh_-FENX7AyaLST0tmh_3sZrctmZPsLN_zkmv-5u17N7unycL2Y_ltQKJhK1rBaNlU9dDUqAdFIaJ6xsuso57riAZtopxa2TiiklrQSAEmojjVWN4kaMiTj3WhxiROj0Dv3W4FFzpk_u9Eb_c6dP7vTZXabUG8r6lNUM-T_j-w_Y72cW8lt7D6ij9RAsOI9gk3aDf5d_BYu6j4o
CitedBy_id crossref_primary_10_1016_j_optcom_2025_132099
crossref_primary_10_1016_j_camwa_2025_06_024
crossref_primary_10_70322_ism_2025_10008
crossref_primary_10_1016_j_cma_2025_118279
crossref_primary_10_1109_LGRS_2024_3397873
crossref_primary_10_1016_j_aiig_2025_100115
crossref_primary_10_1016_j_cma_2024_117198
crossref_primary_10_1016_j_engappai_2025_111283
crossref_primary_10_1016_j_cnsns_2024_108229
crossref_primary_10_3390_lubricants13080360
crossref_primary_10_1016_j_optlastec_2025_113037
crossref_primary_10_1016_j_advengsoft_2024_103806
crossref_primary_10_1016_j_oceaneng_2025_122652
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_1016_j_physleta_2025_130757
crossref_primary_10_1063_5_0277512
crossref_primary_10_3390_act14010014
crossref_primary_10_1016_j_jcp_2024_113601
crossref_primary_10_1016_j_jcp_2025_114311
crossref_primary_10_1103_PhysRevE_111_025301
crossref_primary_10_1109_TGRS_2025_3542082
Cites_doi 10.1016/j.jcp.2021.110666
10.1016/j.cma.2021.114474
10.1137/1.9781611974829.ch2
10.1038/s42256-021-00302-5
10.1016/j.jcp.2018.10.045
10.1115/1.1448332
10.1002/nme.6544
10.1016/j.jcp.2017.11.039
10.1137/0910047
10.1007/s11831-008-9019-9
10.1088/1361-6463/acb604
10.1137/100795772
10.1137/16M1059904
10.1137/130932715
10.1016/0045-7949(79)90012-9
10.1002/zamm.19950750709
10.1016/j.jcp.2022.111121
10.1016/j.camwa.2018.11.032
10.2514/3.50778
10.1016/j.jcp.2021.110545
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.finel.2023.104047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
ExternalDocumentID 10_1016_j_finel_2023_104047
S0168874X23001403
GrantInformation_xml – fundername: Air Force Office of Scientific Research, United States
  grantid: FA9550-23-1-0037
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: UMass Dartmouth Marine and UnderSea Technology (MUST) Research Program
  grantid: N00014-20-1-2849
– fundername: National Science Foundation, United States
  grantid: DMS-2208277
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
T9H
VH1
WUQ
~HD
ID FETCH-LOGICAL-c303t-c0538c6bf5e93e6d66ad3c68f4dd1d13e87f991cd690996c6eee2e5a6ac9891a3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122434400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Tue Nov 18 22:15:31 EST 2025
Sat Nov 29 07:23:43 EST 2025
Sat Feb 24 15:49:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Physics-Informed Neural Networks
Parametric PDEs
Non-intrusive learning
model order reduction
Meta-learning
Network of networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-c0538c6bf5e93e6d66ad3c68f4dd1d13e87f991cd690996c6eee2e5a6ac9891a3
ORCID 0000-0002-7460-8313
ParticipantIDs crossref_primary_10_1016_j_finel_2023_104047
crossref_citationtrail_10_1016_j_finel_2023_104047
elsevier_sciencedirect_doi_10_1016_j_finel_2023_104047
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Finite elements in analysis and design
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patera, Rozza (b1) 2007
Raissi (b28) 2018; 19
Wight, Zhao (b48) 2020
Raissi, Karniadakis (b32) 2018; 357
Benner, Gugercin, Willcox (b7) 2015; 57
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283.
Wang, Sankaran, Perdikaris (b13) 2022
Rozza, Huynh, Patera (b4) 2008; 15
Nagy (b21) 1979; 10
Xu, Zhao, Zhao (b51) 2022
Quarteroni, Manzoni, Negri (b2) 2016; vol. 92
Binev, Cohen, Dahmen, Devore, Petrova, Wojtaszczyk (b15) 2011
Pinkus (b16) 1985
E, Yu (b26) 2018
Miyanawala, Jaiman (b35) 2017
Penwarden, Zhe, Narayan, Kirby (b39) 2021
Raissi, Perdikaris, Karniadakis (b8) 2019; 378
Chen, Jiang, Narayan (b22) 2019; 77
Han, Jentzen, E (b37) 2018
Lu, Jin, Karniadakis (b34) 2019
Zhang, You, Gao, Yu, Lee, Yu (b46) 2023
Raissi, Yazdani, Karniadakis (b33) 2020
Chen, Wang, Hesthaven, Zhang (b47) 2021; 446
Ryck, Mishra, Ray (b31) 2019
McClenny, Braga-Neto (b50) 2020
Baydin, Pearlmutter, Radul, Siskind (b9) 2017; 18
Flennerhag, Moreno, Lawrence, Damianou (b41) 2018
Qin, Beatson, Oktay, McGreivy, Adams (b42) 2022
Goodfellow, Bengio, Courville (b38) 2016
Peterson (b19) 1989; 10
Maday, Patera, Rovas (b5) 2002; vol. 31
Perdikaris, Raissi, Damianou, Lawrence, Karniadakis (b25) 2017
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b10) 2017
Revels, Lubin, Papamarkou (b12) 2016
Finn, Abbeel, Levine (b40) 2017
Lagaris, Likas, Fotiadis (b24) 1998
Prud’homme, Rovas, Veroy, Maday, Patera, Turinici (b17) 2002; 124
Jiang, Chen (b14) 2020; 121
Mattey, Ghosh (b49) 2022; 390
Psaros, Kawaguchi, Karniadakis (b44) 2022; 458
Zhong, Wu, Wang (b45) 2023; 56
Barrett, Reddien (b20) 1995; 75
Noor, Peters (b18) 1980; 18
Khoo, Lu, Ying (b27) 2019
Cybenko (b29) 1989
Chen, Gottlieb, Ji, Maday (b23) 2021; 444
Hesthaven, Rozza, Stamm (b3) 2016
Yarotsky (b30) 2017
Lu, Jin, Pang, Zhang, Karniadakis (b43) 2021; 3
E, Han, Jentzen (b36) 2017
Welper (b52) 2017; 39
B. Haasdonk, Chapter 2: Reduced Basis Methods for Parametrized PDEsZ̃A Tutorial Introduction for Stationary and Instationary Problems, pp. 65–136.
Ryck (10.1016/j.finel.2023.104047_b31) 2019
McClenny (10.1016/j.finel.2023.104047_b50) 2020
Quarteroni (10.1016/j.finel.2023.104047_b2) 2016; vol. 92
Noor (10.1016/j.finel.2023.104047_b18) 1980; 18
Chen (10.1016/j.finel.2023.104047_b22) 2019; 77
Finn (10.1016/j.finel.2023.104047_b40) 2017
E (10.1016/j.finel.2023.104047_b36) 2017
E (10.1016/j.finel.2023.104047_b26) 2018
Hesthaven (10.1016/j.finel.2023.104047_b3) 2016
Barrett (10.1016/j.finel.2023.104047_b20) 1995; 75
Raissi (10.1016/j.finel.2023.104047_b32) 2018; 357
Binev (10.1016/j.finel.2023.104047_b15) 2011
Welper (10.1016/j.finel.2023.104047_b52) 2017; 39
Prud’homme (10.1016/j.finel.2023.104047_b17) 2002; 124
Mattey (10.1016/j.finel.2023.104047_b49) 2022; 390
Wight (10.1016/j.finel.2023.104047_b48) 2020
Lagaris (10.1016/j.finel.2023.104047_b24) 1998
Han (10.1016/j.finel.2023.104047_b37) 2018
Wang (10.1016/j.finel.2023.104047_b13) 2022
Peterson (10.1016/j.finel.2023.104047_b19) 1989; 10
Psaros (10.1016/j.finel.2023.104047_b44) 2022; 458
Revels (10.1016/j.finel.2023.104047_b12) 2016
Pinkus (10.1016/j.finel.2023.104047_b16) 1985
Jiang (10.1016/j.finel.2023.104047_b14) 2020; 121
Lu (10.1016/j.finel.2023.104047_b34) 2019
Rozza (10.1016/j.finel.2023.104047_b4) 2008; 15
10.1016/j.finel.2023.104047_b11
Benner (10.1016/j.finel.2023.104047_b7) 2015; 57
Raissi (10.1016/j.finel.2023.104047_b33) 2020
Cybenko (10.1016/j.finel.2023.104047_b29) 1989
Nagy (10.1016/j.finel.2023.104047_b21) 1979; 10
Raissi (10.1016/j.finel.2023.104047_b28) 2018; 19
Paszke (10.1016/j.finel.2023.104047_b10) 2017
Goodfellow (10.1016/j.finel.2023.104047_b38) 2016
Zhang (10.1016/j.finel.2023.104047_b46) 2023
Miyanawala (10.1016/j.finel.2023.104047_b35) 2017
Maday (10.1016/j.finel.2023.104047_b5) 2002; vol. 31
Chen (10.1016/j.finel.2023.104047_b47) 2021; 446
Khoo (10.1016/j.finel.2023.104047_b27) 2019
Chen (10.1016/j.finel.2023.104047_b23) 2021; 444
Raissi (10.1016/j.finel.2023.104047_b8) 2019; 378
Patera (10.1016/j.finel.2023.104047_b1) 2007
Yarotsky (10.1016/j.finel.2023.104047_b30) 2017
Lu (10.1016/j.finel.2023.104047_b43) 2021; 3
Xu (10.1016/j.finel.2023.104047_b51) 2022
Baydin (10.1016/j.finel.2023.104047_b9) 2017; 18
10.1016/j.finel.2023.104047_b6
Perdikaris (10.1016/j.finel.2023.104047_b25) 2017
Penwarden (10.1016/j.finel.2023.104047_b39) 2021
Qin (10.1016/j.finel.2023.104047_b42) 2022
Flennerhag (10.1016/j.finel.2023.104047_b41) 2018
Zhong (10.1016/j.finel.2023.104047_b45) 2023; 56
References_xml – volume: 390
  year: 2022
  ident: b49
  article-title: A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 57
  start-page: 483
  year: 2015
  end-page: 531
  ident: b7
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
– year: 2017
  ident: b35
  article-title: An efficient deep learning technique for the navier-stokes equations: Application to unsteady wake flow dynamics
– year: 2022
  ident: b13
  article-title: Respecting causality is all you need for training physics-informed neural networks
– year: 2022
  ident: b42
  article-title: Meta-pde: Learning to solve pdes quickly without a mesh
– volume: 121
  start-page: 5426
  year: 2020
  end-page: 5445
  ident: b14
  article-title: Adaptive greedy algorithms based on parameter-domain decomposition and reconstruction for the reduced basis method
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 446
  year: 2021
  ident: b47
  article-title: Physics-informed machine learning for reduced-order modeling of nonlinear problems
  publication-title: J. Comput. Phys.
– year: 2021
  ident: b39
  article-title: Physics-informed neural networks (pinns) for parameterized pdes: a metalearning approach
– year: 2017
  ident: b25
  article-title: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, 473
– year: 2019
  ident: b34
  article-title: Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
– year: 2016
  ident: b3
  publication-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations
– volume: 124
  start-page: 70
  year: 2002
  end-page: 80
  ident: b17
  article-title: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods
  publication-title: J. Fluids Eng.
– year: 2018
  ident: b41
  article-title: Transferring knowledge across learning processes
– volume: 10
  start-page: 777
  year: 1989
  end-page: 786
  ident: b19
  article-title: The reduced basis method for incompressible viscous flow calculations
  publication-title: SIAM J. Sci. Stat. Comput.
– start-page: 1
  year: 2018
  end-page: 12
  ident: b26
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems, 6
– volume: 56
  year: 2023
  ident: b45
  article-title: Accelerating physics-informed neural network based 1d arc simulation by meta learning
  publication-title: J. Phys. D: Appl. Phys.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b8
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 444
  year: 2021
  ident: b23
  article-title: An eim-degradation free reduced basis method via over collocation and residual hyper reduction-based error estimation
  publication-title: J. Comput. Phys.
– start-page: 303
  year: 1989
  end-page: 314
  ident: b29
  article-title: Approximation by superpositions of a sigmoidal function, 2
– start-page: 349
  year: 2017
  end-page: 380
  ident: b36
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, 5
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283.
– year: 2019
  ident: b27
  article-title: Solving for high-dimensional committor functions using artificial neural networks, 6
– volume: 3
  start-page: 218
  year: 2021
  end-page: 229
  ident: b43
  article-title: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
– start-page: 1457
  year: 2011
  end-page: 1472
  ident: b15
  article-title: Convergence rates for greedy algorithms in reduced basis methods
  publication-title: SIAM J. Math. Anal.
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b32
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 2007
  ident: b1
  article-title: Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations
– year: 2019
  ident: b31
  article-title: On the approximation of rough functions with deep neural networks
– start-page: 8505
  year: 2018
  end-page: 8510
  ident: b37
  article-title: Solving high-dimensional partial differential equations using deep learning, 115
– year: 2020
  ident: b48
  article-title: Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks
– volume: 10
  start-page: 683
  year: 1979
  end-page: 688
  ident: b21
  article-title: Modal representation of geometrically nonlinear behaviour by the finite element method
  publication-title: Comput. Struct.
– start-page: 987
  year: 1998
  end-page: 1000
  ident: b24
  article-title: Artificial neural networks for solving ordinary and partial differential equations, 9
– year: 2022
  ident: b51
  article-title: Numerical approximations of the Allen-Cahn-Ohta-Kawasaki (ACOK) equation with modified physics informed neural networks (pinns)
– year: 2023
  ident: b46
  article-title: Metano: How to transfer your knowledge on learning hidden physics
– start-page: 1126
  year: 2017
  end-page: 1135
  ident: b40
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: International Conference on Machine Learning
– volume: 18
  start-page: 455
  year: 1980
  end-page: 462
  ident: b18
  article-title: Reduced basis technique for nonlinear analysis of structures
  publication-title: AIAA J.
– volume: 77
  start-page: 1963
  year: 2019
  end-page: 1979
  ident: b22
  article-title: A robust error estimator and a residual-free error indicator for reduced basis methods
  publication-title: Comput. Math. Appl.
– volume: 75
  start-page: 543
  year: 1995
  end-page: 549
  ident: b20
  article-title: On the reduced basis method
  publication-title: Z. Angew. Math. Mech.
– year: 1985
  ident: b16
  article-title: N-Widths in Approximation Theory
– volume: vol. 31
  start-page: 533
  year: 2002
  end-page: 569
  ident: b5
  article-title: A blackbox reduced-basis output bound method for noncoercive linear problems
  publication-title: Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, XIV (Paris, 1997/1998)
– start-page: 103
  year: 2017
  end-page: 114
  ident: b30
  article-title: Error bounds for approximations with deep relu networks, 94
– volume: 18
  start-page: 5595
  year: 2017
  end-page: 5637
  ident: b9
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– reference: B. Haasdonk, Chapter 2: Reduced Basis Methods for Parametrized PDEsZ̃A Tutorial Introduction for Stationary and Instationary Problems, pp. 65–136.
– volume: 458
  year: 2022
  ident: b44
  article-title: Meta-learning pinn loss functions
  publication-title: J. Comput. Phys.
– year: 2017
  ident: b10
  article-title: Automatic differentiation in pytorch
– year: 2020
  ident: b50
  article-title: Self-adaptive physics-informed neural networks using a soft attention mechanism
– start-page: 1026
  year: 2020
  end-page: 1030
  ident: b33
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, 367
– volume: 19
  start-page: 25:1
  year: 2018
  end-page: 25:24
  ident: b28
  article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– volume: vol. 92
  year: 2016
  ident: b2
  publication-title: Reduced Basis Methods for Partial Differential Equations
– volume: 39
  start-page: A1225
  year: 2017
  end-page: A1250
  ident: b52
  article-title: Interpolation of functions with parameter dependent jumps by transformed snapshots
  publication-title: SIAM J. Sci. Comput.
– volume: 15
  start-page: 229
  year: 2008
  end-page: 275
  ident: b4
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics
  publication-title: Arch. Comput. Methods Eng.
– year: 2016
  ident: b38
  article-title: Deep Learning
– year: 2016
  ident: b12
  article-title: Forward-mode automatic differentiation in Julia
– year: 2017
  ident: 10.1016/j.finel.2023.104047_b10
– volume: 446
  year: 2021
  ident: 10.1016/j.finel.2023.104047_b47
  article-title: Physics-informed machine learning for reduced-order modeling of nonlinear problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110666
– start-page: 349
  year: 2017
  ident: 10.1016/j.finel.2023.104047_b36
– volume: 390
  year: 2022
  ident: 10.1016/j.finel.2023.104047_b49
  article-title: A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114474
– year: 2016
  ident: 10.1016/j.finel.2023.104047_b12
– year: 2019
  ident: 10.1016/j.finel.2023.104047_b27
– start-page: 103
  year: 2017
  ident: 10.1016/j.finel.2023.104047_b30
– ident: 10.1016/j.finel.2023.104047_b6
  doi: 10.1137/1.9781611974829.ch2
– volume: 3
  start-page: 218
  issue: 3
  year: 2021
  ident: 10.1016/j.finel.2023.104047_b43
  article-title: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– start-page: 987
  year: 1998
  ident: 10.1016/j.finel.2023.104047_b24
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.finel.2023.104047_b8
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 124
  start-page: 70
  issue: 1
  year: 2002
  ident: 10.1016/j.finel.2023.104047_b17
  article-title: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.1448332
– volume: 19
  start-page: 25:1
  year: 2018
  ident: 10.1016/j.finel.2023.104047_b28
  article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: 10.1016/j.finel.2023.104047_b48
– volume: 121
  start-page: 5426
  issue: 23
  year: 2020
  ident: 10.1016/j.finel.2023.104047_b14
  article-title: Adaptive greedy algorithms based on parameter-domain decomposition and reconstruction for the reduced basis method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6544
– start-page: 303
  year: 1989
  ident: 10.1016/j.finel.2023.104047_b29
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.finel.2023.104047_b32
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– year: 2022
  ident: 10.1016/j.finel.2023.104047_b42
– volume: 10
  start-page: 777
  issue: 4
  year: 1989
  ident: 10.1016/j.finel.2023.104047_b19
  article-title: The reduced basis method for incompressible viscous flow calculations
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0910047
– volume: 15
  start-page: 229
  issue: 3
  year: 2008
  ident: 10.1016/j.finel.2023.104047_b4
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-008-9019-9
– volume: 56
  issue: 7
  year: 2023
  ident: 10.1016/j.finel.2023.104047_b45
  article-title: Accelerating physics-informed neural network based 1d arc simulation by meta learning
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/acb604
– year: 2017
  ident: 10.1016/j.finel.2023.104047_b35
– year: 2021
  ident: 10.1016/j.finel.2023.104047_b39
– year: 2018
  ident: 10.1016/j.finel.2023.104047_b41
– year: 2019
  ident: 10.1016/j.finel.2023.104047_b31
– start-page: 1
  year: 2018
  ident: 10.1016/j.finel.2023.104047_b26
– year: 2022
  ident: 10.1016/j.finel.2023.104047_b13
– start-page: 1457
  year: 2011
  ident: 10.1016/j.finel.2023.104047_b15
  article-title: Convergence rates for greedy algorithms in reduced basis methods
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100795772
– year: 2023
  ident: 10.1016/j.finel.2023.104047_b46
– year: 2022
  ident: 10.1016/j.finel.2023.104047_b51
– start-page: 1126
  year: 2017
  ident: 10.1016/j.finel.2023.104047_b40
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– year: 2020
  ident: 10.1016/j.finel.2023.104047_b50
– volume: 39
  start-page: A1225
  issue: 4
  year: 2017
  ident: 10.1016/j.finel.2023.104047_b52
  article-title: Interpolation of functions with parameter dependent jumps by transformed snapshots
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1059904
– year: 2016
  ident: 10.1016/j.finel.2023.104047_b3
– year: 2019
  ident: 10.1016/j.finel.2023.104047_b34
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  ident: 10.1016/j.finel.2023.104047_b7
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
  doi: 10.1137/130932715
– volume: vol. 31
  start-page: 533
  year: 2002
  ident: 10.1016/j.finel.2023.104047_b5
  article-title: A blackbox reduced-basis output bound method for noncoercive linear problems
– volume: 10
  start-page: 683
  year: 1979
  ident: 10.1016/j.finel.2023.104047_b21
  article-title: Modal representation of geometrically nonlinear behaviour by the finite element method
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(79)90012-9
– start-page: 8505
  year: 2018
  ident: 10.1016/j.finel.2023.104047_b37
– volume: 75
  start-page: 543
  issue: 7
  year: 1995
  ident: 10.1016/j.finel.2023.104047_b20
  article-title: On the reduced basis method
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19950750709
– year: 2007
  ident: 10.1016/j.finel.2023.104047_b1
– year: 2017
  ident: 10.1016/j.finel.2023.104047_b25
– year: 2016
  ident: 10.1016/j.finel.2023.104047_b38
– volume: 458
  year: 2022
  ident: 10.1016/j.finel.2023.104047_b44
  article-title: Meta-learning pinn loss functions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111121
– volume: vol. 92
  year: 2016
  ident: 10.1016/j.finel.2023.104047_b2
– ident: 10.1016/j.finel.2023.104047_b11
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  ident: 10.1016/j.finel.2023.104047_b9
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– year: 1985
  ident: 10.1016/j.finel.2023.104047_b16
– volume: 77
  start-page: 1963
  year: 2019
  ident: 10.1016/j.finel.2023.104047_b22
  article-title: A robust error estimator and a residual-free error indicator for reduced basis methods
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.11.032
– volume: 18
  start-page: 455
  issue: 4
  year: 1980
  ident: 10.1016/j.finel.2023.104047_b18
  article-title: Reduced basis technique for nonlinear analysis of structures
  publication-title: AIAA J.
  doi: 10.2514/3.50778
– start-page: 1026
  year: 2020
  ident: 10.1016/j.finel.2023.104047_b33
– volume: 444
  year: 2021
  ident: 10.1016/j.finel.2023.104047_b23
  article-title: An eim-degradation free reduced basis method via over collocation and residual hyper reduction-based error estimation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110545
SSID ssj0005264
Score 2.5529454
Snippet Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of nonlinear partial differential equations (PDEs)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104047
SubjectTerms Meta-learning
model order reduction
Network of networks
Non-intrusive learning
Parametric PDEs
Physics-Informed Neural Networks
Title GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
URI https://dx.doi.org/10.1016/j.finel.2023.104047
Volume 228
WOSCitedRecordID wos001122434400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVCygEOLRQQLR_ygVtwld31em1uVUn5EEQ5BCmcVsZrS6miTdWEtj-_M2s72bRVRA9cVpG1dqydl9mZyZtnQj4k2NzJc8l47vqMF5CwKtO3TMjcJSqvICdqTi35UQyHcjJRo07nb-yFuZwVdS2vr9X5fzU1jIGxsXX2AeZeLQoD8BmMDlcwO1z_yfBfRmMGufoQc30vKt2wg0YXlo3xPAiIMBvap1kw34sEAyjRAbYaek44ij4gmbZXz2s2rbEtA1f4aZeazWIpBZnSGpldKPHfG30eLNpx7ukUY9me9eT0hnOro_wJluqrDeLISWgR-a3rmZ6u3gHzuYcAHu9et8sTKW-VJ0LFUkhwuZ6GGV1uGhrCvdOEjLDvZTfv-HNfWjg7cvB08I-iNDta372pnn3rrbbiGkYa21nZLFLiIqVf5BHZSYtcyS7ZOf42mHxvcYNEEIX3e49yVQ0x8M5e7g9pWmHK-BnZDfkFPfa4eE46tt4neyHXoMGTL_bJ05YQ5QtyFUHzia4hQ1uQobchQz1kaIQM9ZChG5ChG5Chc0fXkKEImZfk1-lgfPKVhSM5mIFYZ8kM-GxpxB-XW5VZUQmhq8wI6XhVJVWSWVk4yDhMJRSkHsIIa21qcy20UVIlOntFurAR-5rQxHHuIL42SV5wrox2iVXc4XynRV8dkDQ-1dIEvXo8NmVWbrHoAfm4mnTu5Vq23y6iucoQcfpIsgQAbpt4-LDveUOerH8bb0kXrGDfkcfmcjldXLwP6LsBgl2jRA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPT-PINN%3A+Generative+Pre-Trained+Physics-Informed+Neural+Networks+toward+non-intrusive+Meta-learning+of+parametric+PDEs&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Chen%2C+Yanlai&rft.au=Koohy%2C+Shawn&rft.date=2024-01-01&rft.issn=0168-874X&rft.volume=228&rft.spage=104047&rft_id=info:doi/10.1016%2Fj.finel.2023.104047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_finel_2023_104047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon