Convergence of two-step inertial Tseng’s extragradient methods for quasimonotone variational inequality problems
This paper introduces two-step inertial Tseng’s extragradient methods with self-adaptive step sizes for solving quasimonotone variational inequalities in real Hilbert spaces. Under suitable conditions on the iterative parameters, weak convergence of the sequence generated by the proposed algorithms...
Uložené v:
| Vydané v: | Communications in nonlinear science & numerical simulation Ročník 136; s. 108110 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.09.2024
|
| Predmet: | |
| ISSN: | 1007-5704, 1878-7274 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper introduces two-step inertial Tseng’s extragradient methods with self-adaptive step sizes for solving quasimonotone variational inequalities in real Hilbert spaces. Under suitable conditions on the iterative parameters, weak convergence of the sequence generated by the proposed algorithms is obtained. Numerical results demonstrate the efficiency of the methods compared to others available ones in literature. |
|---|---|
| ISSN: | 1007-5704 1878-7274 |
| DOI: | 10.1016/j.cnsns.2024.108110 |