Convergence of two-step inertial Tseng’s extragradient methods for quasimonotone variational inequality problems

This paper introduces two-step inertial Tseng’s extragradient methods with self-adaptive step sizes for solving quasimonotone variational inequalities in real Hilbert spaces. Under suitable conditions on the iterative parameters, weak convergence of the sequence generated by the proposed algorithms...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in nonlinear science & numerical simulation Ročník 136; s. 108110
Hlavní autori: Dung, Vu Tien, Anh, Pham Ky, Thong, Duong Viet
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.09.2024
Predmet:
ISSN:1007-5704, 1878-7274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper introduces two-step inertial Tseng’s extragradient methods with self-adaptive step sizes for solving quasimonotone variational inequalities in real Hilbert spaces. Under suitable conditions on the iterative parameters, weak convergence of the sequence generated by the proposed algorithms is obtained. Numerical results demonstrate the efficiency of the methods compared to others available ones in literature.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2024.108110