Increasing the payload capacity of soft robot arms by localized stiffening

Soft robot arms offer safety and adaptability due to their passive compliance, but this compliance typically limits their payload capacity and prevents them from performing many tasks. This paper presents a model-based design approach to effectively increase the payload capacity of soft robot arms....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science robotics Ročník 8; číslo 81; s. eadf9001
Hlavní autoři: Bruder, Daniel, Graule, Moritz A, Teeple, Clark B, Wood, Robert J
Médium: Journal Article
Jazyk:angličtina
Vydáno: 30.08.2023
ISSN:2470-9476, 2470-9476
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Soft robot arms offer safety and adaptability due to their passive compliance, but this compliance typically limits their payload capacity and prevents them from performing many tasks. This paper presents a model-based design approach to effectively increase the payload capacity of soft robot arms. The proposed approach uses localized body stiffening to decrease the compliance at the end effector without sacrificing the robot's range of motion. This approach is validated on both a simulated and a real soft robot arm, where experiments show that increasing the stiffness of localized regions of their bodies reduces the compliance at the end effector and increases the height to which the arm can lift a payload. By increasing the payload capacity of soft robot arms, this approach has the potential to improve their efficacy in a variety of tasks including object manipulation and exploration of cluttered environments.Soft robot arms offer safety and adaptability due to their passive compliance, but this compliance typically limits their payload capacity and prevents them from performing many tasks. This paper presents a model-based design approach to effectively increase the payload capacity of soft robot arms. The proposed approach uses localized body stiffening to decrease the compliance at the end effector without sacrificing the robot's range of motion. This approach is validated on both a simulated and a real soft robot arm, where experiments show that increasing the stiffness of localized regions of their bodies reduces the compliance at the end effector and increases the height to which the arm can lift a payload. By increasing the payload capacity of soft robot arms, this approach has the potential to improve their efficacy in a variety of tasks including object manipulation and exploration of cluttered environments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-9476
2470-9476
DOI:10.1126/scirobotics.adf9001