Countable compactness and finite powers of topological groups without convergent sequences

We show under MA countable that for every positive integer n there exists a topological group G without non-trivial convergent sequences such that G n is countably compact but G n+1 is not. This answers the finite case of Comfort's Question 477 in the Open Problems in Topology. We also show und...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Topology and its applications Ročník 146; s. 527 - 538
Hlavní autor: Tomita, A.H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2005
Témata:
ISSN:0166-8641, 1879-3207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show under MA countable that for every positive integer n there exists a topological group G without non-trivial convergent sequences such that G n is countably compact but G n+1 is not. This answers the finite case of Comfort's Question 477 in the Open Problems in Topology. We also show under MA countable +2 < c = c that there are 2 c non-homeomorphic group topologies as above if n⩾2. We apply the construction on suitable sets, answering the finite case of a question of D. Dikranjan on the productivity of suitability and in a topological game defined by Bouziad.
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2003.10.008