Countable compactness and finite powers of topological groups without convergent sequences
We show under MA countable that for every positive integer n there exists a topological group G without non-trivial convergent sequences such that G n is countably compact but G n+1 is not. This answers the finite case of Comfort's Question 477 in the Open Problems in Topology. We also show und...
Uloženo v:
| Vydáno v: | Topology and its applications Ročník 146; s. 527 - 538 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
2005
|
| Témata: | |
| ISSN: | 0166-8641, 1879-3207 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show under MA
countable that for every positive integer
n there exists a topological group
G without non-trivial convergent sequences such that
G
n
is countably compact but
G
n+1
is not. This answers the finite case of Comfort's Question 477 in the Open Problems in Topology. We also show under
MA
countable
+2
<
c
=
c
that there are
2
c
non-homeomorphic group topologies as above if
n⩾2. We apply the construction on suitable sets, answering the finite case of a question of D. Dikranjan on the productivity of suitability and in a topological game defined by Bouziad. |
|---|---|
| ISSN: | 0166-8641 1879-3207 |
| DOI: | 10.1016/j.topol.2003.10.008 |