Learned Greedy Method (LGM): A novel neural architecture for sparse coding and beyond

The fields of signal and image processing have been deeply influenced by the introduction of deep neural networks. Despite their impressive success, the architectures used in these solutions come with no clear justification, being “black box” machines that lack interpretability. A constructive remed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visual communication and image representation Vol. 77; p. 103095
Main Authors: Khatib, Rajaei, Simon, Dror, Elad, Michael
Format: Journal Article
Language:English
Published: Elsevier Inc 01.05.2021
Subjects:
ISSN:1047-3203, 1095-9076
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The fields of signal and image processing have been deeply influenced by the introduction of deep neural networks. Despite their impressive success, the architectures used in these solutions come with no clear justification, being “black box” machines that lack interpretability. A constructive remedy to this drawback is a systematic design of networks by unfolding well-understood iterative algorithms. A popular representative of this approach is LISTA, evaluating sparse representations of processed signals. In this paper, we revisit this task and propose an unfolded version of a greedy pursuit algorithm for the same goal. More specifically, we concentrate on the well-known OMP algorithm, and introduce its unfolded and learned version. Key features of our Learned Greedy Method (LGM) are the ability to accommodate a dynamic number of unfolded layers, and a stopping mechanism based on representation error. We develop several variants of the proposed LGM architecture and demonstrate their flexibility and efficiency. •Unfolding greedy sparse pursuit algorithms to deep neural networks, known as LGM.•Most of LGM features are well justified from sparse representation point of view.•Learning the parameters of LGM in a supervised fashion via back-propagation.•Demonstrating LGM capabilities in various experiments.
AbstractList The fields of signal and image processing have been deeply influenced by the introduction of deep neural networks. Despite their impressive success, the architectures used in these solutions come with no clear justification, being “black box” machines that lack interpretability. A constructive remedy to this drawback is a systematic design of networks by unfolding well-understood iterative algorithms. A popular representative of this approach is LISTA, evaluating sparse representations of processed signals. In this paper, we revisit this task and propose an unfolded version of a greedy pursuit algorithm for the same goal. More specifically, we concentrate on the well-known OMP algorithm, and introduce its unfolded and learned version. Key features of our Learned Greedy Method (LGM) are the ability to accommodate a dynamic number of unfolded layers, and a stopping mechanism based on representation error. We develop several variants of the proposed LGM architecture and demonstrate their flexibility and efficiency. •Unfolding greedy sparse pursuit algorithms to deep neural networks, known as LGM.•Most of LGM features are well justified from sparse representation point of view.•Learning the parameters of LGM in a supervised fashion via back-propagation.•Demonstrating LGM capabilities in various experiments.
ArticleNumber 103095
Author Simon, Dror
Elad, Michael
Khatib, Rajaei
Author_xml – sequence: 1
  givenname: Rajaei
  orcidid: 0000-0002-1376-1840
  surname: Khatib
  fullname: Khatib, Rajaei
  email: rajaee95@technion.ac.il
– sequence: 2
  givenname: Dror
  orcidid: 0000-0002-9056-2933
  surname: Simon
  fullname: Simon, Dror
  email: dror.simon@cs.technion.ac.il
– sequence: 3
  givenname: Michael
  surname: Elad
  fullname: Elad, Michael
  email: elad@cs.technion.ac.il
BookMark eNqFkE1LAzEQhoNUsK3-Ai856mHrZLNfETwU0Sps8WLPIZvM2iw1Kcm20H_v1nryoKd3GOYZeJ8JGTnvkJBrBjMGrLjrZt1e2zBLIWXDhoPIz8iYDZEIKIvRcc7KhKfAL8gkxg4AuODZmKxqVMGhoYuAaA50if3aG3pTL5a393ROnd_jhjrcBbWhKui17VH3u4C09YHGrQoRqfbGug-qnKENHrwzl-S8VZuIVz85Javnp_fHl6R-W7w-zutEc-B9UoFQChrGS1AMtCqh5Trnoi1zXeaqKireCDW0SbO80m2mh9OKC1GmwBoocj4l_PRXBx9jwFZug_1U4SAZyKMZ2clvM_JoRp7MDJT4RWnbq9561wdlN_-wDycWh1p7i0FGbdFpNDYMYqTx9k_-C0y8gIw
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3430010
crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_1016_j_isatra_2024_01_027
crossref_primary_10_1109_TIP_2021_3090531
crossref_primary_10_1109_TIP_2023_3245323
crossref_primary_10_1137_22M1489228
crossref_primary_10_1109_JSEN_2023_3332755
crossref_primary_10_32604_cmc_2023_041416
crossref_primary_10_1109_TCI_2022_3175309
crossref_primary_10_1016_j_knosys_2022_110185
crossref_primary_10_2478_amns_2023_1_00174
Cites_doi 10.1109/TIP.2007.911828
10.1109/TPAMI.2019.2895793
10.1109/CVPR.2019.00406
10.1109/TIP.2018.2839891
10.1109/CVPRW50498.2020.00270
10.1109/TPAMI.2010.161
10.1109/TPAMI.2015.2439281
10.1137/S0097539792240406
10.1109/TSP.2006.881199
10.1109/TCI.2020.2964202
10.1109/TIT.2005.864420
10.1109/78.258082
10.1109/TIT.2009.2016006
10.1109/TIP.2006.881969
10.1109/TIP.2017.2662206
10.1109/TIT.2005.860430
10.1109/TIP.2015.2447836
10.1109/TIP.2014.2323127
10.1016/j.optlaseng.2018.05.014
10.1109/TSP.2010.2052460
10.1109/TSP.2017.2733447
10.1109/TIP.2010.2050625
10.1137/16M1102884
10.1002/cpa.20042
10.1109/TIP.2016.2631888
10.1109/TNNLS.2013.2249088
10.1109/TGRS.2013.2253612
10.1109/TPAMI.2008.79
10.1109/MSP.2007.914728
10.1109/TIP.2012.2221729
10.1109/TIP.2011.2108306
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jvcir.2021.103095
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1095-9076
ExternalDocumentID 10_1016_j_jvcir_2021_103095
S1047320321000560
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-809aa0b1370a10ca70f3c539f75c75a8683b9a3092458cf4cb1383997201b0653
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675405700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-3203
IngestDate Tue Nov 18 22:30:30 EST 2025
Sat Nov 29 07:05:35 EST 2025
Fri Feb 23 02:45:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Unfolding pursuit algorithms
Interpretable image processing architectures
Sparse representation
Orthogonal Matching Pursuit
Deraining
Denoising
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-809aa0b1370a10ca70f3c539f75c75a8683b9a3092458cf4cb1383997201b0653
ORCID 0000-0002-9056-2933
0000-0002-1376-1840
ParticipantIDs crossref_primary_10_1016_j_jvcir_2021_103095
crossref_citationtrail_10_1016_j_jvcir_2021_103095
elsevier_sciencedirect_doi_10_1016_j_jvcir_2021_103095
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Journal of visual communication and image representation
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pati, Rezaiifar, Krishnaprasad (b38) 1993
Zhang, Zuo, Chen, Meng, Zhang (b1) 2017; 26
Huang, Kang, Yang, Lin, Wang (b56) 2012
Arbeláez, Maire, Fowlkes, Malik (b58) 2011; 33
Huang, Song, Cui, Peng, Xu (b27) 2014; 52
Zhou, Jiang, Gong, Xie (b33) 2018; 110
Elad, Aharon (b5) 2006; 15
Papyan, Sulam, Elad (b53) 2017; 65
Pfister, Bresler (b30) 2014
Aharon, Elad, Bruckstein (b11) 2006; 54
Wright, Yang, Ganesh, Sastry, Ma (b35) 2009; 31
D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive image deraining networks: A better and simpler baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3937–3946.
Mairal, Elad, Sapiro (b26) 2008; 17
Fu, Huang, Zeng, Huang, Ding, Paisley (b62) 2017
Daubechies, Defrise, De Mol (b22) 2004; 57
Chen, Liu, Wang, Yin (b44) 2018
Zhang, Ghanem (b47) 2018
Dong, Zhang, Shi, Wu (b24) 2011; 20
Tropp (b42) 2006; 52
Gu, Zhang, Zuo, Feng (b7) 2014
Yang, Wright, Huang, Ma (b28) 2010; 19
Luo, Xu, Ji (b31) 2015
Simon, Elad (b16) 2019
Yang, Chu, Zhang, Xu, Yang (b36) 2013; 24
Mallat, Zhang (b49) 1993; 41
Niknejad, Rabbani, Babaie-Zadeh (b13) 2015; 24
K. Gregor, Y. LeCun, Learning fast approximations of sparse coding, in: Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, pp. 399–406.
Li, Tan, Guo, Lu, Brown (b57) 2016
Kingma, Ba (b54) 2015
Zhang, Zhao, Gao (b12) 2014; 23
Ben-Haim, Eldar, Elad (b43) 2010; 58
Petersen, Pedersen (b48) 2008
Mairal, Sapiro, Elad (b55) 2007
Yang, Yu, Gong, Huang (b34) 2009
Monga, Li, Eldar (b14) 2019
Sreter, Giryes (b21) 2018
Donoho, Elad, Temlyakov (b41) 2006; 52
Wang, Liu, Yang, Han, Huang (b46) 2015
Ma, Duanmu, Wu, Wang, Yong, Li, Zhang (b59) 2017; 26
Yavneh, Elad (b39) 2008
Elad (b23) 2010
Nah, Kim, Lee (b3) 2017
Romano, Elad, Milanfar (b9) 2017; 10
Rubinstein, Zibulevsky, Elad (b51) 2008
Scetbon, Elad, Milanfar (b17) 2019
Grosse, Raina, Kwong, Ng (b40) 2012; 9
G. Vaksman, M. Elad, P. Milanfar, LIDIA: Lightweight learned image denoising with instance adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 524–525.
Dabov, Foi, Katkovnik, Egiazarian (b6) 2006
Yang, Tan, Feng, Guo, Yan, Liu (b60) 2020; 42
Dong, Loy, He, Tang (b4) 2016; 38
Lustig, Donoho, Santos, Pauly (b29) 2008; 25
Dai, Milenkovic (b50) 2009; 55
Zhang, Zuo, Zhang (b2) 2018; 27
Liu, Chen (b45) 2019
Dong, Shi, Li (b10) 2013; 22
Li, Tofighi, Geng, Monga, Eldar (b15) 2020; 6
Horev, Bryt, Rubinstein (b32) 2012
Natarajan (b37) 1995; 24
Lecouat, Ponce, Mairal (b19) 2019
Zoran, Weiss (b8) 2011
Giryes, Elad (b25) 2014
Plaut, Giryes (b52) 2018
Ma (10.1016/j.jvcir.2021.103095_b59) 2017; 26
Tropp (10.1016/j.jvcir.2021.103095_b42) 2006; 52
Aharon (10.1016/j.jvcir.2021.103095_b11) 2006; 54
Mairal (10.1016/j.jvcir.2021.103095_b26) 2008; 17
Grosse (10.1016/j.jvcir.2021.103095_b40) 2012; 9
Arbeláez (10.1016/j.jvcir.2021.103095_b58) 2011; 33
Yang (10.1016/j.jvcir.2021.103095_b28) 2010; 19
Yavneh (10.1016/j.jvcir.2021.103095_b39) 2008
Elad (10.1016/j.jvcir.2021.103095_b5) 2006; 15
Sreter (10.1016/j.jvcir.2021.103095_b21) 2018
Simon (10.1016/j.jvcir.2021.103095_b16) 2019
Mallat (10.1016/j.jvcir.2021.103095_b49) 1993; 41
Dong (10.1016/j.jvcir.2021.103095_b24) 2011; 20
Mairal (10.1016/j.jvcir.2021.103095_b55) 2007
Wright (10.1016/j.jvcir.2021.103095_b35) 2009; 31
Rubinstein (10.1016/j.jvcir.2021.103095_b51) 2008
Zhang (10.1016/j.jvcir.2021.103095_b1) 2017; 26
Petersen (10.1016/j.jvcir.2021.103095_b48) 2008
Gu (10.1016/j.jvcir.2021.103095_b7) 2014
10.1016/j.jvcir.2021.103095_b18
Liu (10.1016/j.jvcir.2021.103095_b45) 2019
Zhang (10.1016/j.jvcir.2021.103095_b12) 2014; 23
Scetbon (10.1016/j.jvcir.2021.103095_b17) 2019
Yang (10.1016/j.jvcir.2021.103095_b34) 2009
Huang (10.1016/j.jvcir.2021.103095_b56) 2012
10.1016/j.jvcir.2021.103095_b20
Monga (10.1016/j.jvcir.2021.103095_b14) 2019
Donoho (10.1016/j.jvcir.2021.103095_b41) 2006; 52
Lustig (10.1016/j.jvcir.2021.103095_b29) 2008; 25
10.1016/j.jvcir.2021.103095_b61
Zhang (10.1016/j.jvcir.2021.103095_b47) 2018
Zhou (10.1016/j.jvcir.2021.103095_b33) 2018; 110
Yang (10.1016/j.jvcir.2021.103095_b36) 2013; 24
Dong (10.1016/j.jvcir.2021.103095_b10) 2013; 22
Ben-Haim (10.1016/j.jvcir.2021.103095_b43) 2010; 58
Giryes (10.1016/j.jvcir.2021.103095_b25) 2014
Zhang (10.1016/j.jvcir.2021.103095_b2) 2018; 27
Dabov (10.1016/j.jvcir.2021.103095_b6) 2006
Chen (10.1016/j.jvcir.2021.103095_b44) 2018
Pati (10.1016/j.jvcir.2021.103095_b38) 1993
Luo (10.1016/j.jvcir.2021.103095_b31) 2015
Elad (10.1016/j.jvcir.2021.103095_b23) 2010
Dai (10.1016/j.jvcir.2021.103095_b50) 2009; 55
Zoran (10.1016/j.jvcir.2021.103095_b8) 2011
Plaut (10.1016/j.jvcir.2021.103095_b52) 2018
Romano (10.1016/j.jvcir.2021.103095_b9) 2017; 10
Lecouat (10.1016/j.jvcir.2021.103095_b19) 2019
Nah (10.1016/j.jvcir.2021.103095_b3) 2017
Wang (10.1016/j.jvcir.2021.103095_b46) 2015
Fu (10.1016/j.jvcir.2021.103095_b62) 2017
Huang (10.1016/j.jvcir.2021.103095_b27) 2014; 52
Niknejad (10.1016/j.jvcir.2021.103095_b13) 2015; 24
Horev (10.1016/j.jvcir.2021.103095_b32) 2012
Yang (10.1016/j.jvcir.2021.103095_b60) 2020; 42
Li (10.1016/j.jvcir.2021.103095_b15) 2020; 6
Papyan (10.1016/j.jvcir.2021.103095_b53) 2017; 65
Kingma (10.1016/j.jvcir.2021.103095_b54) 2015
Dong (10.1016/j.jvcir.2021.103095_b4) 2016; 38
Natarajan (10.1016/j.jvcir.2021.103095_b37) 1995; 24
Li (10.1016/j.jvcir.2021.103095_b57) 2016
Daubechies (10.1016/j.jvcir.2021.103095_b22) 2004; 57
Pfister (10.1016/j.jvcir.2021.103095_b30) 2014
References_xml – start-page: 257
  year: 2017
  end-page: 265
  ident: b3
  article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2010
  ident: b23
  article-title: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: b4
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 72
  year: 2008
  end-page: 82
  ident: b29
  article-title: Compressed sensing MRI
  publication-title: IEEE Signal Process. Mag.
– start-page: 9061
  year: 2018
  end-page: 9071
  ident: b44
  article-title: Theoretical linear convergence of unfolded ista and its practical weights and thresholds
  publication-title: Advances in Neural Information Processing Systems
– start-page: 370
  year: 2015
  end-page: 378
  ident: b46
  article-title: Deep networks for image super-resolution with sparse prior
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– volume: 55
  start-page: 2230
  year: 2009
  end-page: 2249
  ident: b50
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inform. Theory
– volume: 52
  start-page: 6
  year: 2006
  end-page: 18
  ident: b41
  article-title: Stable recovery of sparse overcomplete representations in the presence of noise
  publication-title: IEEE Trans. Inform. Theory
– volume: 27
  start-page: 4608
  year: 2018
  end-page: 4622
  ident: b2
  article-title: Ffdnet: Toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
– start-page: 2274
  year: 2019
  end-page: 2284
  ident: b16
  article-title: Rethinking the CSC model for natural images
  publication-title: Advances in Neural Information Processing Systems
– volume: 10
  start-page: 1804
  year: 2017
  end-page: 1844
  ident: b9
  article-title: The little engine that could: Regularization by denoising (RED)
  publication-title: SIAM J. Imaging Sci.
– reference: G. Vaksman, M. Elad, P. Milanfar, LIDIA: Lightweight learned image denoising with instance adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 524–525.
– start-page: 479
  year: 2011
  end-page: 486
  ident: b8
  article-title: From learning models of natural image patches to whole image restoration
  publication-title: 2011 International Conference on Computer Vision
– reference: K. Gregor, Y. LeCun, Learning fast approximations of sparse coding, in: Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, pp. 399–406.
– volume: 24
  start-page: 227
  year: 1995
  end-page: 234
  ident: b37
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
– year: 2008
  ident: b39
  article-title: Mmse approximation for denoising using several sparse representations
  publication-title: 4th World Conf of the IASC
– year: 2019
  ident: b19
  article-title: Revisiting non local sparse models for image restoration
– volume: 52
  start-page: 1693
  year: 2014
  end-page: 1704
  ident: b27
  article-title: Spatial and spectral image fusion using sparse matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: b49
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– year: 2015
  ident: b54
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
– start-page: 2839
  year: 2014
  end-page: 2843
  ident: b25
  article-title: Sparsity based poisson inpainting
  publication-title: 2014 IEEE International Conference on Image Processing (ICIP)
– start-page: 164
  year: 2012
  end-page: 169
  ident: b56
  article-title: Context-aware single image rain removal
  publication-title: 2012 IEEE International Conference on Multimedia and Expo
– start-page: 2736
  year: 2016
  end-page: 2744
  ident: b57
  article-title: Rain streak removal using layer priors
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1715
  year: 2017
  end-page: 1723
  ident: b62
  article-title: Removing rain from single images via a deep detail network
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 9
  year: 2012
  ident: b40
  article-title: Shift-invariant sparse coding for audio classification
  publication-title: Cortex
– volume: 24
  start-page: 1023
  year: 2013
  end-page: 1035
  ident: b36
  article-title: Sparse representation classifier steered discriminative projection with applications to face recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 17
  start-page: 53
  year: 2008
  end-page: 69
  ident: b26
  article-title: Sparse representation for color image restoration
  publication-title: IEEE Trans. Image Process.
– start-page: 6847
  year: 2018
  end-page: 6851
  ident: b52
  article-title: Matching pursuit based convolutional sparse coding
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 65
  start-page: 5687
  year: 2017
  end-page: 5701
  ident: b53
  article-title: Working locally thinking globally: Theoretical guarantees for convolutional sparse coding
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 2861
  year: 2010
  end-page: 2873
  ident: b28
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
– start-page: 40
  year: 1993
  end-page: 44
  ident: b38
  article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition
  publication-title: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Vol. 1
– volume: 22
  start-page: 700
  year: 2013
  end-page: 711
  ident: b10
  article-title: Nonlocal image restoration with bilateral variance estimation: A low-rank approach
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 3736
  year: 2006
  end-page: 3745
  ident: b5
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 1004
  year: 2017
  end-page: 1016
  ident: b59
  article-title: Waterloo exploration database: New challenges for image quality assessment models
  publication-title: IEEE Trans. Image Process.
– volume: 110
  start-page: 72
  year: 2018
  end-page: 79
  ident: b33
  article-title: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging
  publication-title: Opt. Lasers Eng.
– year: 2019
  ident: b14
  article-title: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
– year: 2019
  ident: b45
  article-title: Alista: Analytic weights are as good as learned weights in lista
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 23
  start-page: 3336
  year: 2014
  end-page: 3351
  ident: b12
  article-title: Group-based sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
– start-page: III
  year: 2007
  end-page: 105–III – 108
  ident: b55
  article-title: Multiscale sparse image representationwith learned dictionaries
  publication-title: 2007 IEEE International Conference on Image Processing, Vol. 3
– volume: 6
  start-page: 666
  year: 2020
  end-page: 681
  ident: b15
  article-title: Efficient and interpretable deep blind image deblurring via algorithm unrolling
  publication-title: IEEE Trans. Comput. Imaging
– year: 2008
  ident: b51
  article-title: Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit
– volume: 58
  start-page: 5030
  year: 2010
  end-page: 5043
  ident: b43
  article-title: Coherence-based performance guarantees for estimating a sparse vector under random noise
  publication-title: IEEE Trans. Signal Process.
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: b1
  article-title: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– start-page: 3397
  year: 2015
  end-page: 3405
  ident: b31
  article-title: Removing rain from a single image via discriminative sparse coding
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  ident: b58
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: b11
  article-title: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– start-page: 1794
  year: 2009
  end-page: 1801
  ident: b34
  article-title: Linear spatial pyramid matching using sparse coding for image classification
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 20
  start-page: 1838
  year: 2011
  end-page: 1857
  ident: b24
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
– year: 2006
  ident: b6
  article-title: Image denoising with block-matching and 3D filtering
  publication-title: Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, Vol. 6064
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: b35
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2008
  ident: b48
  article-title: The Matrix Cookbook
– volume: 24
  start-page: 3624
  year: 2015
  end-page: 3636
  ident: b13
  article-title: Image restoration using Gaussian mixture models with spatially constrained patch clustering
  publication-title: IEEE Trans. Image Process.
– reference: D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive image deraining networks: A better and simpler baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3937–3946.
– start-page: 2191
  year: 2018
  end-page: 2195
  ident: b21
  article-title: Learned convolutional sparse coding
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 42
  start-page: 1377
  year: 2020
  end-page: 1393
  ident: b60
  article-title: Joint rain detection and removal from a single image with contextualized deep networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2862
  year: 2014
  end-page: 2869
  ident: b7
  article-title: Weighted nuclear norm minimization with application to image denoising
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: b17
  article-title: Deep k-svd denoising
– start-page: 6914
  year: 2014
  end-page: 6918
  ident: b30
  article-title: Tomographic reconstruction with adaptive sparsifying transforms
  publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  ident: b22
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci.
– start-page: 1828
  year: 2018
  end-page: 1837
  ident: b47
  article-title: Ista-net: Interpretable optimization-inspired deep network for image compressive sensing
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 592
  year: 2012
  end-page: 595
  ident: b32
  article-title: Adaptive image compression using sparse dictionaries
  publication-title: 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP)
– volume: 52
  start-page: 1030
  year: 2006
  end-page: 1051
  ident: b42
  article-title: Just relax: convex programming methods for identifying sparse signals in noise
  publication-title: IEEE Trans. Inform. Theory
– volume: 17
  start-page: 53
  issue: 1
  year: 2008
  ident: 10.1016/j.jvcir.2021.103095_b26
  article-title: Sparse representation for color image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.911828
– start-page: 9061
  year: 2018
  ident: 10.1016/j.jvcir.2021.103095_b44
  article-title: Theoretical linear convergence of unfolded ista and its practical weights and thresholds
– start-page: 2839
  year: 2014
  ident: 10.1016/j.jvcir.2021.103095_b25
  article-title: Sparsity based poisson inpainting
– start-page: 3397
  year: 2015
  ident: 10.1016/j.jvcir.2021.103095_b31
  article-title: Removing rain from a single image via discriminative sparse coding
– volume: 42
  start-page: 1377
  issue: 6
  year: 2020
  ident: 10.1016/j.jvcir.2021.103095_b60
  article-title: Joint rain detection and removal from a single image with contextualized deep networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2895793
– start-page: 40
  year: 1993
  ident: 10.1016/j.jvcir.2021.103095_b38
  article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition
– start-page: 164
  year: 2012
  ident: 10.1016/j.jvcir.2021.103095_b56
  article-title: Context-aware single image rain removal
– ident: 10.1016/j.jvcir.2021.103095_b61
  doi: 10.1109/CVPR.2019.00406
– start-page: 257
  year: 2017
  ident: 10.1016/j.jvcir.2021.103095_b3
  article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring
– volume: 27
  start-page: 4608
  issue: 9
  year: 2018
  ident: 10.1016/j.jvcir.2021.103095_b2
  article-title: Ffdnet: Toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2839891
– ident: 10.1016/j.jvcir.2021.103095_b18
  doi: 10.1109/CVPRW50498.2020.00270
– start-page: 2191
  year: 2018
  ident: 10.1016/j.jvcir.2021.103095_b21
  article-title: Learned convolutional sparse coding
– start-page: 1715
  year: 2017
  ident: 10.1016/j.jvcir.2021.103095_b62
  article-title: Removing rain from single images via a deep detail network
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  ident: 10.1016/j.jvcir.2021.103095_b58
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.161
– year: 2008
  ident: 10.1016/j.jvcir.2021.103095_b39
  article-title: Mmse approximation for denoising using several sparse representations
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 10.1016/j.jvcir.2021.103095_b4
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  ident: 10.1016/j.jvcir.2021.103095_b37
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792240406
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.jvcir.2021.103095_b11
  article-title: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– year: 2006
  ident: 10.1016/j.jvcir.2021.103095_b6
  article-title: Image denoising with block-matching and 3D filtering
– volume: 6
  start-page: 666
  year: 2020
  ident: 10.1016/j.jvcir.2021.103095_b15
  article-title: Efficient and interpretable deep blind image deblurring via algorithm unrolling
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.2964202
– volume: 52
  start-page: 1030
  issue: 3
  year: 2006
  ident: 10.1016/j.jvcir.2021.103095_b42
  article-title: Just relax: convex programming methods for identifying sparse signals in noise
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2005.864420
– year: 2019
  ident: 10.1016/j.jvcir.2021.103095_b17
– ident: 10.1016/j.jvcir.2021.103095_b20
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 10.1016/j.jvcir.2021.103095_b49
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– volume: 55
  start-page: 2230
  issue: 5
  year: 2009
  ident: 10.1016/j.jvcir.2021.103095_b50
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2009.2016006
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  ident: 10.1016/j.jvcir.2021.103095_b5
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881969
– start-page: 2274
  year: 2019
  ident: 10.1016/j.jvcir.2021.103095_b16
  article-title: Rethinking the CSC model for natural images
– start-page: 1794
  year: 2009
  ident: 10.1016/j.jvcir.2021.103095_b34
  article-title: Linear spatial pyramid matching using sparse coding for image classification
– start-page: III
  year: 2007
  ident: 10.1016/j.jvcir.2021.103095_b55
  article-title: Multiscale sparse image representationwith learned dictionaries
– start-page: 6847
  year: 2018
  ident: 10.1016/j.jvcir.2021.103095_b52
  article-title: Matching pursuit based convolutional sparse coding
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.jvcir.2021.103095_b1
  article-title: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– year: 2008
  ident: 10.1016/j.jvcir.2021.103095_b51
– volume: 52
  start-page: 6
  issue: 1
  year: 2006
  ident: 10.1016/j.jvcir.2021.103095_b41
  article-title: Stable recovery of sparse overcomplete representations in the presence of noise
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2005.860430
– volume: 24
  start-page: 3624
  issue: 11
  year: 2015
  ident: 10.1016/j.jvcir.2021.103095_b13
  article-title: Image restoration using Gaussian mixture models with spatially constrained patch clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2447836
– year: 2019
  ident: 10.1016/j.jvcir.2021.103095_b45
  article-title: Alista: Analytic weights are as good as learned weights in lista
– year: 2008
  ident: 10.1016/j.jvcir.2021.103095_b48
– volume: 23
  start-page: 3336
  issue: 8
  year: 2014
  ident: 10.1016/j.jvcir.2021.103095_b12
  article-title: Group-based sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2323127
– start-page: 6914
  year: 2014
  ident: 10.1016/j.jvcir.2021.103095_b30
  article-title: Tomographic reconstruction with adaptive sparsifying transforms
– start-page: 370
  year: 2015
  ident: 10.1016/j.jvcir.2021.103095_b46
  article-title: Deep networks for image super-resolution with sparse prior
– volume: 110
  start-page: 72
  year: 2018
  ident: 10.1016/j.jvcir.2021.103095_b33
  article-title: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.05.014
– year: 2010
  ident: 10.1016/j.jvcir.2021.103095_b23
– start-page: 2736
  year: 2016
  ident: 10.1016/j.jvcir.2021.103095_b57
  article-title: Rain streak removal using layer priors
– volume: 58
  start-page: 5030
  issue: 10
  year: 2010
  ident: 10.1016/j.jvcir.2021.103095_b43
  article-title: Coherence-based performance guarantees for estimating a sparse vector under random noise
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2052460
– start-page: 1828
  year: 2018
  ident: 10.1016/j.jvcir.2021.103095_b47
  article-title: Ista-net: Interpretable optimization-inspired deep network for image compressive sensing
– volume: 65
  start-page: 5687
  issue: 21
  year: 2017
  ident: 10.1016/j.jvcir.2021.103095_b53
  article-title: Working locally thinking globally: Theoretical guarantees for convolutional sparse coding
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2733447
– year: 2015
  ident: 10.1016/j.jvcir.2021.103095_b54
  article-title: Adam: A method for stochastic optimization
– start-page: 479
  year: 2011
  ident: 10.1016/j.jvcir.2021.103095_b8
  article-title: From learning models of natural image patches to whole image restoration
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  ident: 10.1016/j.jvcir.2021.103095_b28
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2050625
– volume: 10
  start-page: 1804
  issue: 4
  year: 2017
  ident: 10.1016/j.jvcir.2021.103095_b9
  article-title: The little engine that could: Regularization by denoising (RED)
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/16M1102884
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  ident: 10.1016/j.jvcir.2021.103095_b22
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci.
  doi: 10.1002/cpa.20042
– volume: 26
  start-page: 1004
  issue: 2
  year: 2017
  ident: 10.1016/j.jvcir.2021.103095_b59
  article-title: Waterloo exploration database: New challenges for image quality assessment models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2631888
– volume: 24
  start-page: 1023
  issue: 7
  year: 2013
  ident: 10.1016/j.jvcir.2021.103095_b36
  article-title: Sparse representation classifier steered discriminative projection with applications to face recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2249088
– year: 2019
  ident: 10.1016/j.jvcir.2021.103095_b14
– start-page: 592
  year: 2012
  ident: 10.1016/j.jvcir.2021.103095_b32
  article-title: Adaptive image compression using sparse dictionaries
– volume: 52
  start-page: 1693
  issue: 3
  year: 2014
  ident: 10.1016/j.jvcir.2021.103095_b27
  article-title: Spatial and spectral image fusion using sparse matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2253612
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.jvcir.2021.103095_b35
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– start-page: 2862
  year: 2014
  ident: 10.1016/j.jvcir.2021.103095_b7
  article-title: Weighted nuclear norm minimization with application to image denoising
– volume: 25
  start-page: 72
  issue: 2
  year: 2008
  ident: 10.1016/j.jvcir.2021.103095_b29
  article-title: Compressed sensing MRI
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914728
– year: 2019
  ident: 10.1016/j.jvcir.2021.103095_b19
– volume: 9
  year: 2012
  ident: 10.1016/j.jvcir.2021.103095_b40
  article-title: Shift-invariant sparse coding for audio classification
  publication-title: Cortex
– volume: 22
  start-page: 700
  issue: 2
  year: 2013
  ident: 10.1016/j.jvcir.2021.103095_b10
  article-title: Nonlocal image restoration with bilateral variance estimation: A low-rank approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2221729
– volume: 20
  start-page: 1838
  issue: 7
  year: 2011
  ident: 10.1016/j.jvcir.2021.103095_b24
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2108306
SSID ssj0003934
Score 2.3798862
Snippet The fields of signal and image processing have been deeply influenced by the introduction of deep neural networks. Despite their impressive success, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103095
SubjectTerms Denoising
Deraining
Interpretable image processing architectures
Orthogonal Matching Pursuit
Sparse representation
Unfolding pursuit algorithms
Title Learned Greedy Method (LGM): A novel neural architecture for sparse coding and beyond
URI https://dx.doi.org/10.1016/j.jvcir.2021.103095
Volume 77
WOSCitedRecordID wos000675405700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwM8IBggxgD5ASHQCHLjZrZ5q1D5JW1CsEl9ixzXFa26dGq7MP577nxxmjGYAImXKLXsuPF9tb_ad98x9tShWZ20CQp9JH3jVWJTdBrXum9UNsY1JiSbUIeHejQynzqdbzEWppqrstTn5-b0v5oaysDYGDr7F-ZuHgoFcA9GhyuYHa5_ZPigmOpxmwkWpu97ByFFdMjc8e4A_vdTKHq5qPx8D8UsUSugfZiAbocwyyyDG_s4hjAWIdDlN0y2mq7OgsxIK9aEDiVO0CMo6GbGGKfNof9X-BgOgz7bmfXTZqsHwEMz4XLROA4P54TEtpN_vVWR9jaOgbR_FmNoLrh4Bq0ImQqa5nxdhhkkBWWGifM0pXu5NOXT7sPs1axyUxR4TXsoJCAodedPWtpfsDPsK8VjDSB719hWqjKju2xr8GE4-tgs4tKQQ0L8clGwKrgGXurq16SmRVSObrNbtV34gJBxh3V8uc1utnQnt9luXWm6OuHP-IUYodVddlwjiBOCOCGIPwf8vHjNBzxghxN2eBs7HLDDCTucsMMBBZywc48dvx0evXmf1Nk3Ege0Zg3UxVgrip5UwvaEs0pMpMukmajMqczqfS0LY-Ht036m3aTvoCqwbaOAUhaoeHyfdctF6R8wLiw8Qlk_kUB3vci0HIsiy4CMSm-91zssjcOXu1qaHjOkzPPogzjLw5jnOOY5jfkOe9k0OiVllqur70e75DW5JNKYA5CuavjwXxvushubH8Ej1l0vz_xjdt1V6-lq-aQG3A-BW5xm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learned+Greedy+Method+%28LGM%29%3A+A+novel+neural+architecture+for+sparse+coding+and+beyond&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Khatib%2C+Rajaei&rft.au=Simon%2C+Dror&rft.au=Elad%2C+Michael&rft.date=2021-05-01&rft.pub=Elsevier+Inc&rft.issn=1047-3203&rft.eissn=1095-9076&rft.volume=77&rft_id=info:doi/10.1016%2Fj.jvcir.2021.103095&rft.externalDocID=S1047320321000560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon