Label Space-Induced Pseudo Label Refinement for Multi-Source Black-Box Domain Adaptation

Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms of privacy, security, and intellectual property. Recent black-box UDA (BDA) reduces such constraints by defining a pseudo label from a singl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 34; s. 3181 - 3193
Hlavní autoři: Yoo, Chaehwa, Liu, Xiaofeng, Xing, Fangxu, Woo, Jonghye, Kang, Je-Won
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms of privacy, security, and intellectual property. Recent black-box UDA (BDA) reduces such constraints by defining a pseudo label from a single encapsulated source application programming interface (API) prediction, which allows for self-training of the target model. Nonetheless, existing methods have limited consideration for multi-source settings, in which multiple source domain APIs are available to generate pseudo labels. In this work, we introduce a novel training framework for multi-source BDA (MSBDA), dubbed Label Space-Induced Pseudo Label Refinement (LPR). Specifically, LPR incorporates a Pseudo label Refinery Network (PRN) that learns the relationship among source domains conditioned by the target domain only utilizing source API's prediction. The target model is adapted by our dual phases PRN. First, a warm-up phase targets to avoid failure due to noisy samples and provide an initial pseudo-label, which is followed by a label refinement phase with domain relationship exploration. We provide theoretical support for the mechanism of the LPR. Experimental results on four benchmark datasets demonstrate that MSBDA using LPR achieves competitive performance compared to state-of-the-art approaches with different DA settings.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2025.3570220