Short-circuit constrained distribution network reconfiguration considering closed-loop operation
This paper presents a novel scenario-based stochastic mixed-integer second-order cone programming model to solve the problem of optimal reconfiguration of distribution systems with renewable energy sources considering short-circuit constraints. The proposed formulation minimizes technical losses by...
Uloženo v:
| Vydáno v: | Sustainable Energy, Grids and Networks Ročník 32; s. 100937 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2022
|
| Témata: | |
| ISSN: | 2352-4677, 2352-4677 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a novel scenario-based stochastic mixed-integer second-order cone programming model to solve the problem of optimal reconfiguration of distribution systems with renewable energy sources considering short-circuit constraints. The proposed formulation minimizes technical losses by modifying the statuses of sectionalizing and tie switches, allowing the operation of distribution networks with radial and closed-loop topologies. Since the formation of loops could impact fault current levels, short-circuit constraints are considered in the problem formulation. Numerical experiments are carried out using an 84-node system and the results demonstrate the effectiveness of the proposed formulation to reduce technical losses notably when a closed-loop operation is allowed. Additionally, it is verified that short-circuit constraints prevent the adoption of network configurations with high short-circuit values. |
|---|---|
| ISSN: | 2352-4677 2352-4677 |
| DOI: | 10.1016/j.segan.2022.100937 |