A new deep neural network algorithm for multiple stopping with applications in options pricing

In this paper, we propose a deep learning method to solve high-dimensional optimal multiple stopping problems. We represent the policies of multiple stopping problems by the composition of functions. Using the new representation, we approximate the optimal stopping policy recursively with simulation...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in nonlinear science & numerical simulation Ročník 117; s. 106881
Hlavní autori: Han, Yuecai, Li, Nan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2023
Predmet:
ISSN:1007-5704, 1878-7274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose a deep learning method to solve high-dimensional optimal multiple stopping problems. We represent the policies of multiple stopping problems by the composition of functions. Using the new representation, we approximate the optimal stopping policy recursively with simulation samples. We also derive lower and upper bounds and confidence intervals for the values. Finally, we apply the algorithm to the pricing of swing options, and it produces accurate results in high-dimensional problems. •A deep learning-based algorithm for optimal multiple stopping problems is introduced.•Lower bounds and upper bounds for the optimal value are constructed.•Applications to high-dimensional swing options are considered.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2022.106881