A new deep neural network algorithm for multiple stopping with applications in options pricing

In this paper, we propose a deep learning method to solve high-dimensional optimal multiple stopping problems. We represent the policies of multiple stopping problems by the composition of functions. Using the new representation, we approximate the optimal stopping policy recursively with simulation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in nonlinear science & numerical simulation Ročník 117; s. 106881
Hlavní autoři: Han, Yuecai, Li, Nan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2023
Témata:
ISSN:1007-5704, 1878-7274
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a deep learning method to solve high-dimensional optimal multiple stopping problems. We represent the policies of multiple stopping problems by the composition of functions. Using the new representation, we approximate the optimal stopping policy recursively with simulation samples. We also derive lower and upper bounds and confidence intervals for the values. Finally, we apply the algorithm to the pricing of swing options, and it produces accurate results in high-dimensional problems. •A deep learning-based algorithm for optimal multiple stopping problems is introduced.•Lower bounds and upper bounds for the optimal value are constructed.•Applications to high-dimensional swing options are considered.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2022.106881