On the integrated mean squared error of wavelet density estimation for linear processes

Let { X n : n ∈ N } be a linear process with density function f ( x ) ∈ L 2 ( R ) . We study wavelet density estimation of f ( x ). Under some regular conditions on the characteristic function of innovations, we achieve, based on the number of nonzero coefficients in the linear process, the minimax...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems Jg. 26; H. 2; S. 235 - 254
Hauptverfasser: Beknazaryan, Aleksandr, Sang, Hailin, Adamic, Peter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.07.2023
Springer Nature B.V
Schlagworte:
ISSN:1387-0874, 1572-9311
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let { X n : n ∈ N } be a linear process with density function f ( x ) ∈ L 2 ( R ) . We study wavelet density estimation of f ( x ). Under some regular conditions on the characteristic function of innovations, we achieve, based on the number of nonzero coefficients in the linear process, the minimax optimal convergence rate of the integrated mean squared error of density estimation. Considered wavelets have compact support and are twice continuously differentiable. The number of vanishing moments of mother wavelet is proportional to the number of nonzero coefficients in the linear process and to the rate of decay of characteristic function of innovations. Theoretical results are illustrated by simulation studies with innovations following Gaussian, Cauchy and chi-squared distributions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1387-0874
1572-9311
DOI:10.1007/s11203-022-09281-9