Siloxene‐Functionalized Laser‐Induced Graphene via COSi Bonding for High‐Performance Heavy Metal Sensing Patch Applications

Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Small (Weinheim an der Bergstrasse, Germany) Ročník 18; číslo 25; s. e2201247 - n/a
Hlavní autoři: Hui, Xue, Sharma, Sudeep, Sharifuzzaman, Md, Zahed, Md Abu, Shin, Young Do, Seonu, Soo Kyeong, Song, Hye Su, Park, Jae Yeong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.06.2022
Témata:
ISSN:1613-6810, 1613-6829, 1613-6829
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH−1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C−1 (correlation coefficient of 0.139% °C−1). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases. A flexible hybrid sensor based on Siloxene/LIG is newly developed for the noninvasive and accurate detection of Cu ions, pH, and temperature simultaneously. The laser‐induced graphene/polydimethylsiloxane is decorated with Siloxene‐based materials via a newly generated COSi bond to ultimately functionalize the electrodes into different sensors for multiple analyses of human perspiration.
AbstractList Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C (correlation coefficient of 0.139% °C ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH−1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C−1 (correlation coefficient of 0.139% °C−1). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases. A flexible hybrid sensor based on Siloxene/LIG is newly developed for the noninvasive and accurate detection of Cu ions, pH, and temperature simultaneously. The laser‐induced graphene/polydimethylsiloxane is decorated with Siloxene‐based materials via a newly generated COSi bond to ultimately functionalize the electrodes into different sensors for multiple analyses of human perspiration.
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH−1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C−1 (correlation coefficient of 0.139% °C−1). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases.
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH −1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C −1 (correlation coefficient of 0.139% °C −1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases.
Author Sharifuzzaman, Md
Zahed, Md Abu
Shin, Young Do
Sharma, Sudeep
Park, Jae Yeong
Hui, Xue
Seonu, Soo Kyeong
Song, Hye Su
Author_xml – sequence: 1
  givenname: Xue
  surname: Hui
  fullname: Hui, Xue
  organization: Kwangwoon University
– sequence: 2
  givenname: Sudeep
  surname: Sharma
  fullname: Sharma, Sudeep
  organization: Kwangwoon University
– sequence: 3
  givenname: Md
  surname: Sharifuzzaman
  fullname: Sharifuzzaman, Md
  organization: Kwangwoon University
– sequence: 4
  givenname: Md Abu
  surname: Zahed
  fullname: Zahed, Md Abu
  organization: Kwangwoon University
– sequence: 5
  givenname: Young Do
  surname: Shin
  fullname: Shin, Young Do
  organization: Kwangwoon University
– sequence: 6
  givenname: Soo Kyeong
  surname: Seonu
  fullname: Seonu, Soo Kyeong
  organization: Kwangwoon University
– sequence: 7
  givenname: Hye Su
  surname: Song
  fullname: Song, Hye Su
  organization: Kwangwoon University
– sequence: 8
  givenname: Jae Yeong
  orcidid: 0000-0002-2056-5151
  surname: Park
  fullname: Park, Jae Yeong
  email: jaepark@kw.ac.kr
  organization: Kwangwoon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35595710$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAQgC1URH_gyhFZ4sJlF9tJ7ORYVrRbKVUrLZwtrzPpunLsYCeF5cSNK-_Ag_AuvACvgMO2RaqEONiesb5vLM8coj3nHSD0nJI5JYS9jp21c0YYI5Tl4hE6oJxmM16yau8-pmQfHcZ4TUg2QU_QflYUVSEoOUBfV8b6T-Dg55dvJ6PTg_FOWfMZGlyrCCFdn7lm1Ck_DarfJBLfGIUXv77_uEhrZfAb7xrjrnDrA16aq01SLiGkrFNOA16CutnicxiUxStwcUIv1aA3-LjvrdFqejI-RY9bZSM8uz2P0PuTt-8Wy1l9cXq2OK5nOiOZmNGsqUrBNckAoGVp42sOeUVayptKcaZJ2zY5KVVTVExoUbYtVVpXel0qpiE7Qq92dfvgP4wQB9mZqMFa5cCPUTLOhShFlrOEvnyAXvsxpO5MlKgKWgieJ-rFLTWuO2hkH0ynwlbetTgB-Q7QwccYoJXaDH8-PQRlrKRETpOU0yTl_SSTNn-g3VX-p1DthI_GwvY_tFyd1_Vf9zessLg4
CitedBy_id crossref_primary_10_1016_j_cej_2023_143364
crossref_primary_10_1016_j_apsusc_2023_157099
crossref_primary_10_1016_j_cej_2024_151513
crossref_primary_10_1016_j_talanta_2024_127039
crossref_primary_10_1088_2631_7990_adbb35
crossref_primary_10_1016_j_cej_2023_145836
crossref_primary_10_1007_s12633_023_02664_4
crossref_primary_10_1002_smtd_202400118
crossref_primary_10_1021_acsami_5c04078
crossref_primary_10_1007_s00216_023_05082_y
crossref_primary_10_1016_j_mattod_2023_06_022
crossref_primary_10_1016_j_mtchem_2025_103033
crossref_primary_10_1016_j_talanta_2023_124362
crossref_primary_10_1007_s40820_024_01428_y
crossref_primary_10_1016_j_jiec_2025_01_036
Cites_doi 10.1039/D0CC00245C
10.1021/acs.analchem.0c02211
10.1016/j.bios.2012.12.031
10.1002/adfm.202007661
10.1002/admt.202000014
10.1039/C5TA00321K
10.2215/CJN.08331109
10.1039/C6TA07545B
10.1016/j.cej.2021.129728
10.1039/c0jm03751f
10.1038/s41587-019-0321-x
10.1016/j.snb.2014.03.045
10.1039/c2jm34795d
10.1002/smll.201702249
10.1039/C8EE00160J
10.1002/adfm.202009018
10.1039/C9TA03584B
10.1039/c4tb00104d
10.1016/j.memsci.2019.117322
10.1016/j.matlet.2021.130637
10.1002/adfm.201910331
10.1016/0025-5408(95)00195-6
10.1039/c2ay25674f
10.1002/adhm.201800074
10.1021/acsami.8b15323
10.1016/j.snb.2020.128790
10.1016/S0022-0728(02)01005-7
10.1021/acssensors.6b00287
10.1126/sciadv.aax0649
10.1016/j.bios.2020.112220
10.1021/acsnano.6b04005
10.1021/acsami.0c03148
10.1007/s00216-020-03002-y
10.1021/acssensors.7b00729
10.1016/j.electacta.2017.07.084
10.1038/ncomms6714
10.1021/acsami.9b04915
10.1002/elan.201600568
10.1007/s11581-015-1499-7
10.1016/j.bios.2020.112637
10.1016/j.aca.2013.06.040
10.1002/smll.201802350
10.1016/j.cej.2020.124684
10.1039/C7RA02267K
10.1002/elan.201800414
10.1021/acsnano.7b02182
10.1039/C5RA00871A
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202201247
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35595710
10_1002_smll_202201247
SMLL202201247
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Trade, Industry & Energy (MI, Korea)
– fundername: Technology Innovation Program
  funderid: 20000773
– fundername: Technology Innovation Program
  grantid: 20000773
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3037-13d9876c03eeef2eee6b6e490f16d9a62c0ffd408ad5927c78ff1acc9cb8a2ce3
IEDL.DBID DRFUL
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799500300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 11:17:35 EDT 2025
Fri Jul 25 12:13:45 EDT 2025
Thu Apr 03 07:03:27 EDT 2025
Sat Nov 29 04:10:42 EST 2025
Tue Nov 18 21:19:23 EST 2025
Sun Jul 06 04:45:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords flexible hybrid perspiration sensors
noninvasive Cu ions detection
Siloxene-functionalized laser-induced graphene
pH calibration
C O Si bonds
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3037-13d9876c03eeef2eee6b6e490f16d9a62c0ffd408ad5927c78ff1acc9cb8a2ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2056-5151
PMID 35595710
PQID 2679515764
PQPubID 1046358
PageCount 14
ParticipantIDs proquest_miscellaneous_2667787342
proquest_journals_2679515764
pubmed_primary_35595710
crossref_citationtrail_10_1002_smll_202201247
crossref_primary_10_1002_smll_202201247
wiley_primary_10_1002_smll_202201247_SMLL202201247
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 7
2017; 2
2015; 5
2019; 5
2015; 3
2019; 31
2021; 421
2013; 43
2019; 11
2019; 13
2021; 304
2002; 531
2020; 160
2016; 10
2020; 325
2019; 38
2020; 12
2020; 56
2017; 29
2020; 169
2014; 197
1996; 31
2018; 7
2016; 4
2020; 5
2014; 5
2016; 1
2021; 31
2014; 2
2020; 30
2020; 393
2017; 11
2021; 413
2020; 92
2015; 21
2011; 21
2013; 790
2019; 591
2018; 11
2010; 5
2012; 4
2012; 22
2017; 248
2018; 14
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
Luong D. X. (e_1_2_8_13_1) 2019; 13
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 413
  start-page: 727
  year: 2021
  publication-title: Anal. Bioanal. Chem.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 169
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 11
  start-page: 624
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1860
  year: 2017
  publication-title: ACS Sens.
– volume: 1
  start-page: 866
  year: 2016
  publication-title: ACS Sens.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 43
  start-page: 293
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 197
  start-page: 422
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 3
  start-page: 9411
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 2212
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 325
  year: 2020
  publication-title: Sens. Actuators, B
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 591
  year: 2019
  publication-title: J. Membr. Sci.
– volume: 393
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 160
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 38
  start-page: 217
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 248
  start-page: 46
  year: 2017
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 2579
  year: 2019
  publication-title: ACS Nano
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 790
  start-page: 31
  year: 2013
  publication-title: Anal. Chim. Acta
– volume: 92
  year: 2020
  publication-title: Anal. Chem.
– volume: 29
  start-page: 1022
  year: 2017
  publication-title: Electroanalysis
– volume: 10
  start-page: 7216
  year: 2016
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 5714
  year: 2014
  publication-title: Nat. Commun.
– volume: 31
  start-page: 239
  year: 2019
  publication-title: Electroanalysis
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 1595
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 7634
  year: 2017
  publication-title: ACS Nano
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 1277
  year: 2010
  publication-title: Clin. J. Am. Soc. Nephrol.
– volume: 56
  start-page: 4824
  year: 2020
  publication-title: Chem. Commun.
– volume: 4
  start-page: 3332
  year: 2012
  publication-title: Anal. Methods
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 304
  year: 2021
  publication-title: Mater. Lett.
– volume: 531
  start-page: 43
  year: 2002
  publication-title: J. Electroanal. Chem.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 21
  start-page: 4326
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 31
  start-page: 307
  year: 1996
  publication-title: Mater. Res, Bull.
– volume: 21
  start-page: 3125
  year: 2015
  publication-title: Ionics
– ident: e_1_2_8_25_1
  doi: 10.1039/D0CC00245C
– ident: e_1_2_8_48_1
  doi: 10.1021/acs.analchem.0c02211
– ident: e_1_2_8_31_1
  doi: 10.1016/j.bios.2012.12.031
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.202007661
– ident: e_1_2_8_46_1
  doi: 10.1002/admt.202000014
– ident: e_1_2_8_27_1
  doi: 10.1039/C5TA00321K
– ident: e_1_2_8_7_1
  doi: 10.2215/CJN.08331109
– ident: e_1_2_8_21_1
  doi: 10.1039/C6TA07545B
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cej.2021.129728
– ident: e_1_2_8_32_1
  doi: 10.1039/c0jm03751f
– ident: e_1_2_8_45_1
  doi: 10.1038/s41587-019-0321-x
– ident: e_1_2_8_41_1
  doi: 10.1016/j.snb.2014.03.045
– volume: 13
  start-page: 2579
  year: 2019
  ident: e_1_2_8_13_1
  publication-title: ACS Nano
– ident: e_1_2_8_36_1
  doi: 10.1039/c2jm34795d
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.201702249
– ident: e_1_2_8_24_1
  doi: 10.1039/C8EE00160J
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.202009018
– ident: e_1_2_8_20_1
  doi: 10.1039/C9TA03584B
– ident: e_1_2_8_37_1
  doi: 10.1039/c4tb00104d
– ident: e_1_2_8_16_1
  doi: 10.1016/j.memsci.2019.117322
– ident: e_1_2_8_18_1
  doi: 10.1016/j.matlet.2021.130637
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.201910331
– ident: e_1_2_8_26_1
  doi: 10.1016/0025-5408(95)00195-6
– ident: e_1_2_8_34_1
  doi: 10.1039/c2ay25674f
– ident: e_1_2_8_8_1
  doi: 10.1002/adhm.201800074
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.8b15323
– ident: e_1_2_8_17_1
  doi: 10.1016/j.snb.2020.128790
– ident: e_1_2_8_40_1
  doi: 10.1016/S0022-0728(02)01005-7
– ident: e_1_2_8_5_1
  doi: 10.1021/acssensors.6b00287
– ident: e_1_2_8_2_1
  doi: 10.1126/sciadv.aax0649
– ident: e_1_2_8_42_1
  doi: 10.1016/j.bios.2020.112220
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.6b04005
– ident: e_1_2_8_15_1
  doi: 10.1021/acsami.0c03148
– ident: e_1_2_8_1_1
  doi: 10.1007/s00216-020-03002-y
– ident: e_1_2_8_3_1
  doi: 10.1021/acssensors.7b00729
– ident: e_1_2_8_39_1
  doi: 10.1016/j.electacta.2017.07.084
– ident: e_1_2_8_11_1
  doi: 10.1038/ncomms6714
– ident: e_1_2_8_14_1
  doi: 10.1021/acsami.9b04915
– ident: e_1_2_8_33_1
  doi: 10.1002/elan.201600568
– ident: e_1_2_8_38_1
  doi: 10.1007/s11581-015-1499-7
– ident: e_1_2_8_12_1
  doi: 10.1016/j.bios.2020.112637
– ident: e_1_2_8_30_1
  doi: 10.1016/j.aca.2013.06.040
– ident: e_1_2_8_9_1
  doi: 10.1002/smll.201802350
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cej.2020.124684
– ident: e_1_2_8_35_1
  doi: 10.1039/C7RA02267K
– ident: e_1_2_8_4_1
  doi: 10.1002/elan.201800414
– ident: e_1_2_8_47_1
  doi: 10.1021/acsnano.7b02182
– ident: e_1_2_8_43_1
  doi: 10.1039/C5RA00871A
SSID ssj0031247
Score 2.4910188
Snippet Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical...
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201247
SubjectTerms C O Si bonds
Carbon nanotubes
Chemical properties
Copper
Correlation coefficients
Electrode materials
Electron transfer
flexible hybrid perspiration sensors
Graphene
Heavy metals
Ion detectors
Nanotechnology
noninvasive Cu ions detection
Perspiration
pH calibration
Polyanilines
Polydimethylsiloxane
Sensitivity
Sensors
Siloxene‐functionalized laser‐induced graphene
Skin temperature
Temperature sensors
Title Siloxene‐Functionalized Laser‐Induced Graphene via COSi Bonding for High‐Performance Heavy Metal Sensing Patch Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202201247
https://www.ncbi.nlm.nih.gov/pubmed/35595710
https://www.proquest.com/docview/2679515764
https://www.proquest.com/docview/2667787342
Volume 18
WOSCitedRecordID wos000799500300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB7RlEN74KcUagjVVqrEyaqzXnvtYxUIPaRtRFopN2u9P6qlkKAkjYATN668Aw_Cu_ACvAIzseMmQhVSe7DltWfXq935279vAA7D3BlhZOgbR1M3uYv8VGrjx4nNTRSbIDduEWxCnp0lg0HaWznFX-JD1BNuJBkLfU0CrvLp0Q1o6PTjkJYOOFowLuQGbHJkXtGAzbcfOpfdpTYO6SMNutBs-YS9tQRuDPjRegnrhukfb3PdeV1Yn87j-9f7CTyqPE92XLLKU3hgRzuwvYJH-Ay-94vh-DNqv9_ffnTQ4JXzhMVXa1gXrd0EX1OoD43p9wR0jZRsXijW_vPz1zle_YJRmGIsi6EvzGgPCWbp3ZxNYCdWzb-wU4suP-vT3nkk7aE1uGLHKyvpu3DZeXfRPvGrSA2-DumcYSs0KapVHYTWWsfxFuexFWngWrFJVcx14JAngkSZKOVSy8S5ltI61XmiuLbhc2iMxiO7B0zaSLmWsEYmWtDav8qd0kagJjKSJ7EH_rKbMl3BmFM0jWFWAjDzjBo4qxvYgzc1_acSwONWyuay17NKkKcZjyX6oDgoEx4c1J9RBGldRY3s-JpoCIVPhoJ78KLklvpX6M6lEXpxHvAFU_ynDln_tNutUy_vkukVbNFzuZ2tCY3Z5Nq-hod6Piumk33YkINkvxKSv1oHGaw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB6VFIly4L9gWmCRkDhZddZrr32sWtIgnBCRVurNWu-PsJQmVdJGwIkb175DH4R34QV4BWZix22EEBLiYEvenV2vdudv_74BeBUWzggjQ984WropXOSnUhs_TmxhotgEhXGLYBOy30-Oj9NBfZqQ7sJU-BDNghtJxkJfk4DTgvTOFWro7GREewccTRgX8gasC-SlqAXr-x86R9lSHYeUSbMutFs-gW8tkRsDvrNaw6pl-s3dXPVeF-anc_c_NPwe3Kl9T7ZbMct9WLPjB3D7GiLhQ_g2LEeTT6j_fny96KDJq1YKyy_WsAzt3RSTKdiHxu8DgrpGSjYvFdv7efn9PT7DklGgYqyLoTfM6BQJFhlc3U5gXavmn1nPotPPhnR6HkkHaA8-st1re-mP4Kjz5nCv69exGnwd0k3DdmhSVKw6CK21juMrLmIr0sC1Y5OqmOvAIVcEiTJRyqWWiXNtpXWqi0RxbcNNaI0nY_sEmLSRcm1hjUy0oN1_VTiljUBdZCRPYg_85TjlugYyp3gao7yCYOY5dXDedLAHrxv60wrC44-U28thz2tRnuU8luiF4rRMePCyyUYhpJ0VNbaTc6IhHD4ZCu7B44pdml-hQ5dG6Md5wBdc8Zc25MNeljVfT_-l0Au41T3sZXn2tv9uCzYovTrctg2ts-m5fQY39fysnE2f17LyC3zOHLQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BixAc-C0QKGAkJE5Rs05ix8eqJRSRLiuWSr1Fjn9EpGW32m1XwIkbV96BB-m79AV4BWY22bQrhJAQh0SKPXYs2_Njj_0NwPO48jaxMg6tp62byqehksaGInOVTYWNKusXwSZkv58dHqpBe5qQ7sI0-BDdhhtxxkJeE4O7I-u3zlFDZx9H5DvgqMJ4Ii_DepIqgby5vvsuPyiW4jimTFp1od4KCXxridwY8a3VGlY102_m5qr1ulA_-c3_0PBbcKO1Pdl2M1luwyU3vgPXLyAS3oVvw3o0-YTy7-zr9xxVXrNTWH9xlhWo76aYTME-DH6_IqhrpGTzWrOdnz9O3-IzrBkFKsa6GFrDjE6RYJHB-e0Etuf0_DPbd2j0syGdnkfSAeqDD2z7gi99Aw7yl-939sI2VkNoYrpp2IutQsFqotg55zm-RCVcoiLfE1ZpwU3kcVZEmbap4tLIzPueNkaZKtPcuPgerI0nY_cAmHSp9r3EWZmZhLz_uvLa2ARlkZU8EwGEy3EqTQtkTvE0RmUDwcxL6uCy6-AAXnT0Rw2Exx8pN5fDXrasPCu5kGiF4rIsCeBZl41MSJ4VPXaTE6IhHD4ZJzyA-8106X6FBp1K0Y4LgC9mxV_aUA73i6L7evgvhZ7C1cFuXhav-28ewTVKbs62bcLa8fTEPYYrZn5cz6ZPWlb5BeCMHC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Siloxene-Functionalized+Laser-Induced+Graphene+via+C%EF%A3%BFO%EF%A3%BFSi+Bonding+for+High-Performance+Heavy+Metal+Sensing+Patch+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hui%2C+Xue&rft.au=Sharma%2C+Sudeep&rft.au=Sharifuzzaman%2C+Md&rft.au=Zahed%2C+Md+Abu&rft.date=2022-06-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=18&rft.issue=25&rft.spage=e2201247&rft_id=info:doi/10.1002%2Fsmll.202201247&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon