Advancing Acoustic Droplet Vaporization for Tissue Characterization Using Quantitative Ultrasound and Transfer Learning

Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 72; H. 6; S. 1897 - 1908
Hauptverfasser: Kaushik, Anuj, Fabiilli, Mario L., Myers, Daniel D., Fowlkes, J. Brian, Aliabouzar, Mitra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9294, 1558-2531, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics.
AbstractList Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics.
Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics.Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics.
Author Aliabouzar, Mitra
Fowlkes, J. Brian
Kaushik, Anuj
Myers, Daniel D.
Fabiilli, Mario L.
Author_xml – sequence: 1
  givenname: Anuj
  orcidid: 0000-0003-1336-5669
  surname: Kaushik
  fullname: Kaushik, Anuj
  organization: Department of Radiology, University of Michigan, USA
– sequence: 2
  givenname: Mario L.
  surname: Fabiilli
  fullname: Fabiilli, Mario L.
  organization: Department of Radiology, Biomedical Engineering, and Applied Physics Program, University of Michigan, USA
– sequence: 3
  givenname: Daniel D.
  surname: Myers
  fullname: Myers, Daniel D.
  organization: Department of Surgery, University of Michigan, USA
– sequence: 4
  givenname: J. Brian
  orcidid: 0000-0002-4536-3919
  surname: Fowlkes
  fullname: Fowlkes, J. Brian
  organization: Department of Radiology, Biomedical Engineering, and Applied Physics Program, University of Michigan, USA
– sequence: 5
  givenname: Mitra
  orcidid: 0000-0002-2263-7278
  surname: Aliabouzar
  fullname: Aliabouzar, Mitra
  email: aliabouz@umich.edu
  organization: Department of Radiology, Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40031047$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1vEzEQhi3UiqaFH4CEkKVeuGzw5-76mKYFKgUhpISr5diz4GpjB9tbBL8eRwkV4mCNPPO89sy8l-gsxAAIvaJkTilR79Y3n-7mjDA555J1VNBnaEal7BsmOT1DM0Jo3yimxAW6zPmhXkUv2ufoQhDCKRHdDP1cuEcTrA_f8MLGKRdv8W2K-xEK_mr2MfnfpvgY8BATXvucJ8DL7yYZW-CptskH_ZfJhOJLTT0C3owlmRyn4LCpZ51MyAMkvAKTQqVfoPPBjBlenuIV2ry_Wy8_NqvPH-6Xi1VjOWGl2batIFsO1AoFYDgdODVWuoFaSwkhgxt6oQgzTCm57cE51zMDjitwirXAr9Db47v7FH9MkIve-WxhHE2AOq7mtOOC8I7Kil7_hz7EKYXaneaMtJzUD_tKvTlR03YHTu-T35n0S_9daQXoEbAp5pxgeEIo0Qfb9ME2fbBNn2yrmtdHjQeAf_ie805J_gd3FZTJ
CODEN IEBEAX
Cites_doi 10.1177/0161734620932
10.1016/j.compbiomed.2023.107872
10.1039/D0SM00753F
10.1121/1.5091781
10.1016/j.zemedi.2023.01.004
10.1109/TUFFC.2002.1009331
10.1109/58.981381
10.1590/0100-3984.2018.0084
10.1016/0041-624X(92)90041-J
10.3390/ijms160715997
10.3389/fonc.2023.1258970
10.1038/s41598-017-13977-x
10.1016/j.ultsonch.2016.01.019
10.1088/0031-9155/58/13/4513
10.1118/1.4747526
10.1016/j.ultrasmedbio.2024.05.019
10.1088/1361-6560/ab1a64
10.1016/j.ultrasmedbio.2010.03.015
10.21037/cdt.2017.11.05
10.1016/S0301-5629(00)00262-3
10.1016/j.protcy.2012.09.084
10.1117/1.JMI.10.S2.S22410
10.1016/j.ultrasmedbio.2011.05.001
10.1371/journal.pone.0266446
10.1121/AT.2022.18.2.14
10.1016/j.ultrasmedbio.2021.12.007
10.1088/1361-6560/ab5093
10.1016/j.actbio.2023.04.037
10.1016/j.ultrasmedbio.2022.08.008
10.1002/macp.202100366
10.1111/j.1365-2559.2010.03609.x
10.1016/j.ultsonch.2022.106090
10.1016/j.ultras.2023.106940
10.1177/01617346211009788
10.1016/j.diii.2013.02.005
10.1097/RLI.0000000000000919
10.1177/0161734616639875
10.7150/thno.18650
10.1121/1.2166708
10.1002/mp.13361
10.1016/j.ejrad.2013.05.008
10.1002/adhm.202101672
10.1109/LSENS.2023.3307102
10.1117/1.JBO.17.2.026007
10.1016/j.ultsonch.2024.106754
10.1016/j.compbiomed.2021.104407
10.1016/j.ultrasmedbio.2022.11.004
10.1242/dmm.004077
10.1109/TUFFC.2020.3032441
10.1016/j.ultrasmedbio.2019.08.018
10.1109/TSMC.1973.4309314
10.1016/j.ultsonch.2024.106984
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2025.3527141
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1908
ExternalDocumentID 40031047
10_1109_TBME_2025_3527141
10833795
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Radiology at the University of Michigan
– fundername: Frankel Cardiovascular Center at Michigan Medicine
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
85S
97E
AAJGR
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c302t-b6640b3e1c49eea31f31ac5df1cc1000fdf84902a2995b8eddd82aed39ed926e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492213600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 08:32:46 EDT 2025
Sat Nov 15 15:51:09 EST 2025
Sat Nov 15 01:41:49 EST 2025
Sat Nov 29 06:50:43 EST 2025
Wed Nov 19 08:27:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-b6640b3e1c49eea31f31ac5df1cc1000fdf84902a2995b8eddd82aed39ed926e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2263-7278
0000-0002-4536-3919
0000-0003-1336-5669
PMID 40031047
PQID 3206301008
PQPubID 85474
PageCount 12
ParticipantIDs proquest_miscellaneous_3173403715
ieee_primary_10833795
proquest_journals_3206301008
pubmed_primary_40031047
crossref_primary_10_1109_TBME_2025_3527141
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Misra (ref53) 2021
ref12
ref15
ref14
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
Burgess (ref17) 2015; 11
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Kingma (ref44) 2014
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref42
  doi: 10.1177/0161734620932
– ident: ref37
  doi: 10.1016/j.compbiomed.2023.107872
– ident: ref13
  doi: 10.1039/D0SM00753F
– volume: 11
  start-page: 35
  issue: 4
  year: 2015
  ident: ref17
  article-title: On-demand cavitation from bursting droplets
  publication-title: Acoust. Today
– ident: ref24
  doi: 10.1121/1.5091781
– ident: ref15
  doi: 10.1016/j.zemedi.2023.01.004
– ident: ref10
  doi: 10.1109/TUFFC.2002.1009331
– ident: ref23
  doi: 10.1109/58.981381
– ident: ref7
  doi: 10.1590/0100-3984.2018.0084
– ident: ref49
  doi: 10.1016/0041-624X(92)90041-J
– ident: ref4
  doi: 10.3390/ijms160715997
– ident: ref45
  doi: 10.3389/fonc.2023.1258970
– ident: ref35
  doi: 10.1038/s41598-017-13977-x
– ident: ref11
  doi: 10.1016/j.ultsonch.2016.01.019
– ident: ref19
  doi: 10.1088/0031-9155/58/13/4513
– ident: ref51
  doi: 10.1118/1.4747526
– ident: ref30
  doi: 10.1016/j.ultrasmedbio.2024.05.019
– ident: ref31
  doi: 10.1088/1361-6560/ab1a64
– ident: ref48
  doi: 10.1016/j.ultrasmedbio.2010.03.015
– ident: ref3
  doi: 10.21037/cdt.2017.11.05
– ident: ref9
  doi: 10.1016/S0301-5629(00)00262-3
– ident: ref33
  doi: 10.1016/j.protcy.2012.09.084
– ident: ref38
  doi: 10.1117/1.JMI.10.S2.S22410
– ident: ref25
  doi: 10.1016/j.ultrasmedbio.2011.05.001
– ident: ref40
  doi: 10.1371/journal.pone.0266446
– ident: ref16
  doi: 10.1121/AT.2022.18.2.14
– ident: ref14
  doi: 10.1016/j.ultrasmedbio.2021.12.007
– ident: ref55
  doi: 10.1088/1361-6560/ab5093
– ident: ref46
  doi: 10.1016/j.actbio.2023.04.037
– ident: ref29
  doi: 10.1016/j.ultrasmedbio.2022.08.008
– ident: ref47
  doi: 10.1002/macp.202100366
– ident: ref2
  doi: 10.1111/j.1365-2559.2010.03609.x
– ident: ref20
  doi: 10.1016/j.ultsonch.2022.106090
– ident: ref36
  doi: 10.1016/j.ultras.2023.106940
– ident: ref50
  doi: 10.1177/01617346211009788
– ident: ref6
  doi: 10.1016/j.diii.2013.02.005
– ident: ref28
  doi: 10.1097/RLI.0000000000000919
– ident: ref34
  doi: 10.1177/0161734616639875
– ident: ref5
  doi: 10.7150/thno.18650
– ident: ref27
  doi: 10.1121/1.2166708
– year: 2014
  ident: ref44
  article-title: Adam: A method for stochastic optimization
– ident: ref54
  doi: 10.1002/mp.13361
– year: 2021
  ident: ref53
  article-title: Ensemble transfer learning of elastography and B-mode breast ultrasound images
– ident: ref8
  doi: 10.1016/j.ejrad.2013.05.008
– ident: ref12
  doi: 10.1002/adhm.202101672
– ident: ref41
  doi: 10.1109/LSENS.2023.3307102
– ident: ref52
  doi: 10.1117/1.JBO.17.2.026007
– ident: ref18
  doi: 10.1016/j.ultsonch.2024.106754
– ident: ref43
  doi: 10.1016/j.compbiomed.2021.104407
– ident: ref39
  doi: 10.1016/j.ultrasmedbio.2022.11.004
– ident: ref1
  doi: 10.1242/dmm.004077
– ident: ref21
  doi: 10.1109/TUFFC.2020.3032441
– ident: ref26
  doi: 10.1016/j.ultrasmedbio.2019.08.018
– ident: ref32
  doi: 10.1109/TSMC.1973.4309314
– ident: ref22
  doi: 10.1016/j.ultsonch.2024.106984
SSID ssj0014846
Score 2.4699855
Snippet Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1897
SubjectTerms Acoustic droplet vaporization
Acoustic responses
Acoustics
Artificial neural networks
Biological tissues
Biomedical engineering
Biomedical imaging
Bubbles
Cavitation
Deep Learning
Density
Droplets
Fibrin
Fibrin - chemistry
Homogeneity
Humans
Hydrogels
Hydrogels - chemistry
Hydrophones
Image Processing, Computer-Assisted - methods
Imaging techniques
Lipidomics
Liquids
Mean
Mechanical properties
Microenvironments
Neural networks
Phantoms, Imaging
phase-shift droplets
Probes
Radiology
Texture
tissue characterization
Tissue engineering
Transfer learning
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Vaporization
Volatilization
Title Advancing Acoustic Droplet Vaporization for Tissue Characterization Using Quantitative Ultrasound and Transfer Learning
URI https://ieeexplore.ieee.org/document/10833795
https://www.ncbi.nlm.nih.gov/pubmed/40031047
https://www.proquest.com/docview/3206301008
https://www.proquest.com/docview/3173403715
Volume 72
WOSCitedRecordID wos001492213600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2aUEpyaJs0TbZNgwo9FZxKlmxLxzRN6KEJKWzK3ow-RqFQvMXrTf5-JFm77CWHHAwCGdnozXhGnpk3AF8a5JXThhe1rE0hpKGFEpoVlfA2WhxfY2LX_9VcX8vZTN3kYvVUC4OIKfkMT-MwxfLd3C7jr7Kg4ZLzRlVbsNU09VistQ4ZCDlW5VAWNLhUIocwGVXfpt-vLsJRsKxOg7vRMBHbw4hEihm7qmzYo9Rg5WlfM9mcyzfPfNu38Do7l-RslIY9eIHdPuxuUA7uw6urHEx_Bw-po3IY35EzO09dvciPPiaUD-SPDn55LtEkwa8l0wQQOV_zO-e5lHJAfi91l6rVwreT3P4ber2I7ZqIDleyhh57kqlc7w7g9vJiev6zyH0YCstpORSmrgU1HJkVClFz5jnTtnKeWRvDA955KRQtdTBtlZHonJOlRscVOlXWyN_Ddjfv8AgIGkOFoVZrpEJYpise5htXyRgw9H4CX1dotP9Huo02HVOoaiOKbUSxzShO4CDu-saN44ZP4HgFYJs1ctHyMrKLRSqjCXxeTwddigES3WHY5jb4UlxEDsOwxOEI_Hrxlbx8eOKhH2EnvtuYRXYM20O_xE_w0t4Pfxf9SRDYmTxJAvsI5k_nWg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQTwOPNoCCwWMxAkpxY7tJD6W0qqI3RVIW9Rb5Me4QkJZlM3C38d2vKu99MAhkiVHjuXPkxl7Zr4BeF8jl04bXlRNZQrRGFoooVkhhbdR4_gKE7v-tJ7Pm6sr9S0nq6dcGERMwWd4HJvJl--Wdh2vyoKEN5zXSt6GO1KIko7pWlungWjGvBzKggyXSmQnJqPq4-LT7CwcBkt5HAyOmolYIEYkWsxYV2VHI6USKzdbm0nrnD_-z_k-gUfZvCQn4354Crew24eHO6SD-3Bvlt3pB_A31VQO7WtyYpeprhf53MeQ8oH80MEyz0maJFi2ZJEgIqdbhufcl4IOyPe17lK-Wvh7kstfQ69XsWAT0eFJ-tBjTzKZ6_UhXJ6fLU4vilyJobCclkNhqkpQw5FZoRA1Z54zbaXzzNroIPDON0LRUgflJk2Dzrmm1Oi4QqfKCvkz2OuWHb4AgsZQYajVGqkQlmnJQ3_tZBNdht5P4MMGjfb3SLjRpoMKVW1EsY0othnFCRzGVd95cVzwCRxtAGyzTK5aXkZ-sUhmNIF32-4gTdFFojsMy9wGa4qLyGIYhng-Ar8dfLNfXt7w0bdw_2Ixm7bTL_Ovr-BBnOcYU3YEe0O_xtdw1_4Zfq76N2nb_gOd_um5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Acoustic+Droplet+Vaporization+for+Tissue+Characterization+Using+Quantitative+Ultrasound+and+Transfer+Learning&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kaushik%2C+Anuj&rft.au=Fabiilli%2C+Mario+L&rft.au=Myers%2C+Daniel+D&rft.au=Fowlkes%2C+J+Brian&rft.date=2025-06-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=PP&rft_id=info:doi/10.1109%2FTBME.2025.3527141&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon