Advancing Acoustic Droplet Vaporization for Tissue Characterization Using Quantitative Ultrasound and Transfer Learning
Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic...
Uložené v:
| Vydané v: | IEEE transactions on biomedical engineering Ročník 72; číslo 6; s. 1897 - 1908 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics. |
|---|---|
| AbstractList | Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics. Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics.Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics. |
| Author | Aliabouzar, Mitra Fowlkes, J. Brian Kaushik, Anuj Myers, Daniel D. Fabiilli, Mario L. |
| Author_xml | – sequence: 1 givenname: Anuj orcidid: 0000-0003-1336-5669 surname: Kaushik fullname: Kaushik, Anuj organization: Department of Radiology, University of Michigan, USA – sequence: 2 givenname: Mario L. surname: Fabiilli fullname: Fabiilli, Mario L. organization: Department of Radiology, Biomedical Engineering, and Applied Physics Program, University of Michigan, USA – sequence: 3 givenname: Daniel D. surname: Myers fullname: Myers, Daniel D. organization: Department of Surgery, University of Michigan, USA – sequence: 4 givenname: J. Brian orcidid: 0000-0002-4536-3919 surname: Fowlkes fullname: Fowlkes, J. Brian organization: Department of Radiology, Biomedical Engineering, and Applied Physics Program, University of Michigan, USA – sequence: 5 givenname: Mitra orcidid: 0000-0002-2263-7278 surname: Aliabouzar fullname: Aliabouzar, Mitra email: aliabouz@umich.edu organization: Department of Radiology, Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40031047$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkU1vEzEQhi3UiqaFH4CEkKVeuGzw5-76mKYFKgUhpISr5diz4GpjB9tbBL8eRwkV4mCNPPO89sy8l-gsxAAIvaJkTilR79Y3n-7mjDA555J1VNBnaEal7BsmOT1DM0Jo3yimxAW6zPmhXkUv2ufoQhDCKRHdDP1cuEcTrA_f8MLGKRdv8W2K-xEK_mr2MfnfpvgY8BATXvucJ8DL7yYZW-CptskH_ZfJhOJLTT0C3owlmRyn4LCpZ51MyAMkvAKTQqVfoPPBjBlenuIV2ry_Wy8_NqvPH-6Xi1VjOWGl2batIFsO1AoFYDgdODVWuoFaSwkhgxt6oQgzTCm57cE51zMDjitwirXAr9Db47v7FH9MkIve-WxhHE2AOq7mtOOC8I7Kil7_hz7EKYXaneaMtJzUD_tKvTlR03YHTu-T35n0S_9daQXoEbAp5pxgeEIo0Qfb9ME2fbBNn2yrmtdHjQeAf_ie805J_gd3FZTJ |
| CODEN | IEBEAX |
| Cites_doi | 10.1177/0161734620932 10.1016/j.compbiomed.2023.107872 10.1039/D0SM00753F 10.1121/1.5091781 10.1016/j.zemedi.2023.01.004 10.1109/TUFFC.2002.1009331 10.1109/58.981381 10.1590/0100-3984.2018.0084 10.1016/0041-624X(92)90041-J 10.3390/ijms160715997 10.3389/fonc.2023.1258970 10.1038/s41598-017-13977-x 10.1016/j.ultsonch.2016.01.019 10.1088/0031-9155/58/13/4513 10.1118/1.4747526 10.1016/j.ultrasmedbio.2024.05.019 10.1088/1361-6560/ab1a64 10.1016/j.ultrasmedbio.2010.03.015 10.21037/cdt.2017.11.05 10.1016/S0301-5629(00)00262-3 10.1016/j.protcy.2012.09.084 10.1117/1.JMI.10.S2.S22410 10.1016/j.ultrasmedbio.2011.05.001 10.1371/journal.pone.0266446 10.1121/AT.2022.18.2.14 10.1016/j.ultrasmedbio.2021.12.007 10.1088/1361-6560/ab5093 10.1016/j.actbio.2023.04.037 10.1016/j.ultrasmedbio.2022.08.008 10.1002/macp.202100366 10.1111/j.1365-2559.2010.03609.x 10.1016/j.ultsonch.2022.106090 10.1016/j.ultras.2023.106940 10.1177/01617346211009788 10.1016/j.diii.2013.02.005 10.1097/RLI.0000000000000919 10.1177/0161734616639875 10.7150/thno.18650 10.1121/1.2166708 10.1002/mp.13361 10.1016/j.ejrad.2013.05.008 10.1002/adhm.202101672 10.1109/LSENS.2023.3307102 10.1117/1.JBO.17.2.026007 10.1016/j.ultsonch.2024.106754 10.1016/j.compbiomed.2021.104407 10.1016/j.ultrasmedbio.2022.11.004 10.1242/dmm.004077 10.1109/TUFFC.2020.3032441 10.1016/j.ultrasmedbio.2019.08.018 10.1109/TSMC.1973.4309314 10.1016/j.ultsonch.2024.106984 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2025.3527141 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1908 |
| ExternalDocumentID | 40031047 10_1109_TBME_2025_3527141 10833795 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Department of Radiology at the University of Michigan – fundername: Frankel Cardiovascular Center at Michigan Medicine |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 85S 97E AAJGR AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c302t-b6640b3e1c49eea31f31ac5df1cc1000fdf84902a2995b8eddd82aed39ed926e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492213600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Sep 28 08:32:46 EDT 2025 Sat Nov 15 15:51:09 EST 2025 Sat Nov 15 01:41:49 EST 2025 Sat Nov 29 06:50:43 EST 2025 Wed Nov 19 08:27:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c302t-b6640b3e1c49eea31f31ac5df1cc1000fdf84902a2995b8eddd82aed39ed926e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2263-7278 0000-0002-4536-3919 0000-0003-1336-5669 |
| PMID | 40031047 |
| PQID | 3206301008 |
| PQPubID | 85474 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3173403715 ieee_primary_10833795 proquest_journals_3206301008 pubmed_primary_40031047 crossref_primary_10_1109_TBME_2025_3527141 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Misra (ref53) 2021 ref12 ref15 ref14 ref52 ref11 ref55 ref10 ref54 ref16 ref19 ref18 Burgess (ref17) 2015; 11 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Kingma (ref44) 2014 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref42 doi: 10.1177/0161734620932 – ident: ref37 doi: 10.1016/j.compbiomed.2023.107872 – ident: ref13 doi: 10.1039/D0SM00753F – volume: 11 start-page: 35 issue: 4 year: 2015 ident: ref17 article-title: On-demand cavitation from bursting droplets publication-title: Acoust. Today – ident: ref24 doi: 10.1121/1.5091781 – ident: ref15 doi: 10.1016/j.zemedi.2023.01.004 – ident: ref10 doi: 10.1109/TUFFC.2002.1009331 – ident: ref23 doi: 10.1109/58.981381 – ident: ref7 doi: 10.1590/0100-3984.2018.0084 – ident: ref49 doi: 10.1016/0041-624X(92)90041-J – ident: ref4 doi: 10.3390/ijms160715997 – ident: ref45 doi: 10.3389/fonc.2023.1258970 – ident: ref35 doi: 10.1038/s41598-017-13977-x – ident: ref11 doi: 10.1016/j.ultsonch.2016.01.019 – ident: ref19 doi: 10.1088/0031-9155/58/13/4513 – ident: ref51 doi: 10.1118/1.4747526 – ident: ref30 doi: 10.1016/j.ultrasmedbio.2024.05.019 – ident: ref31 doi: 10.1088/1361-6560/ab1a64 – ident: ref48 doi: 10.1016/j.ultrasmedbio.2010.03.015 – ident: ref3 doi: 10.21037/cdt.2017.11.05 – ident: ref9 doi: 10.1016/S0301-5629(00)00262-3 – ident: ref33 doi: 10.1016/j.protcy.2012.09.084 – ident: ref38 doi: 10.1117/1.JMI.10.S2.S22410 – ident: ref25 doi: 10.1016/j.ultrasmedbio.2011.05.001 – ident: ref40 doi: 10.1371/journal.pone.0266446 – ident: ref16 doi: 10.1121/AT.2022.18.2.14 – ident: ref14 doi: 10.1016/j.ultrasmedbio.2021.12.007 – ident: ref55 doi: 10.1088/1361-6560/ab5093 – ident: ref46 doi: 10.1016/j.actbio.2023.04.037 – ident: ref29 doi: 10.1016/j.ultrasmedbio.2022.08.008 – ident: ref47 doi: 10.1002/macp.202100366 – ident: ref2 doi: 10.1111/j.1365-2559.2010.03609.x – ident: ref20 doi: 10.1016/j.ultsonch.2022.106090 – ident: ref36 doi: 10.1016/j.ultras.2023.106940 – ident: ref50 doi: 10.1177/01617346211009788 – ident: ref6 doi: 10.1016/j.diii.2013.02.005 – ident: ref28 doi: 10.1097/RLI.0000000000000919 – ident: ref34 doi: 10.1177/0161734616639875 – ident: ref5 doi: 10.7150/thno.18650 – ident: ref27 doi: 10.1121/1.2166708 – year: 2014 ident: ref44 article-title: Adam: A method for stochastic optimization – ident: ref54 doi: 10.1002/mp.13361 – year: 2021 ident: ref53 article-title: Ensemble transfer learning of elastography and B-mode breast ultrasound images – ident: ref8 doi: 10.1016/j.ejrad.2013.05.008 – ident: ref12 doi: 10.1002/adhm.202101672 – ident: ref41 doi: 10.1109/LSENS.2023.3307102 – ident: ref52 doi: 10.1117/1.JBO.17.2.026007 – ident: ref18 doi: 10.1016/j.ultsonch.2024.106754 – ident: ref43 doi: 10.1016/j.compbiomed.2021.104407 – ident: ref39 doi: 10.1016/j.ultrasmedbio.2022.11.004 – ident: ref1 doi: 10.1242/dmm.004077 – ident: ref21 doi: 10.1109/TUFFC.2020.3032441 – ident: ref26 doi: 10.1016/j.ultrasmedbio.2019.08.018 – ident: ref32 doi: 10.1109/TSMC.1973.4309314 – ident: ref22 doi: 10.1016/j.ultsonch.2024.106984 |
| SSID | ssj0014846 |
| Score | 2.4699082 |
| Snippet | Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1897 |
| SubjectTerms | Acoustic droplet vaporization Acoustic responses Acoustics Artificial neural networks Biological tissues Biomedical engineering Biomedical imaging Bubbles Cavitation Deep Learning Density Droplets Fibrin Fibrin - chemistry Homogeneity Humans Hydrogels Hydrogels - chemistry Hydrophones Image Processing, Computer-Assisted - methods Imaging techniques Lipidomics Liquids Mean Mechanical properties Microenvironments Neural networks Phantoms, Imaging phase-shift droplets Probes Radiology Texture tissue characterization Tissue engineering Transfer learning Ultrasonic imaging Ultrasonography - methods Ultrasound Vaporization Volatilization |
| Title | Advancing Acoustic Droplet Vaporization for Tissue Characterization Using Quantitative Ultrasound and Transfer Learning |
| URI | https://ieeexplore.ieee.org/document/10833795 https://www.ncbi.nlm.nih.gov/pubmed/40031047 https://www.proquest.com/docview/3206301008 https://www.proquest.com/docview/3173403715 |
| Volume | 72 |
| WOSCitedRecordID | wos001492213600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RCiF64FEKLJTKSJyQUvzKw8dSWnFpBdIW7S1y7HFVCWVRNlv-PmPHu9pLDxwiWYrjWJ5xZpyZ-T6AT9qgDMHpIigZIqi2KiwqUZAttLXTupSWJ7KJ-vq6WSzMj1ysnmphEDEln-FpbKZYvl-6dfxVRju8Uao25R7s1XU1FWttQwa6mapyuKAdLI3OIUzBzZf516sLOgrK8pTcjVroSA-jEyhmZFXZsUeJYOVhXzPZnMvn_znbF_AsO5fsbNKGl_AI-0M42IEcPIQnVzmY_gr-JkZlat-yM7dMrF7s2xATykf2y5Jfnks0Gfm1bJ4ExM63-M75Xko5YD_Xtk_VavTtZDe_x8GuIl0Ts3QlaxhwYBnK9fYIbi4v5uffi8zDUDjF5Vh0VaV5p1A4kixaJYIS1pU-COdieCD40GjDpSXTVnYNeu8badErg97ICtVr2O-XPb4FJlytUdGDqCtty7rj1ME47qsuoEU3g88babR_JriNNh1TuGmjFNsoxTZLcQZHcdV3Ok4LPoPjjQDbvCNXrZIRXSxCGc3g4_Y27aUYILE90jK35EspHTEMaYg3k-C3g2_05d0DL30PT-PcpiyyY9gfhzV-gMfufrxbDSeksIvmJCnsPwK8540 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQRQOPNoCCwWMxAkpxa88fCylVRHdFUhb1Jvl2OMKqcqibBb-PrbjXe2lBw6RLMVxLI8nM87MfB_AB6mQe29l4QX3EVRbFAYFK4ItNLWVsuSGJrKJejZrrq7U91ysnmphEDEln-FRbKZYvlvYVfxVFjS8EaJW5V24V0rJ6ViutQkayGasy6Es6DBXMgcxGVWf5p-np-EwyMuj4HDUTEaCGJlgMSOvypZFShQrt3ubyeqcPfnP-T6Fx9m9JMfjfngGd7Dbg0dboIN78GCaw-n78DdxKof2NTm2i8TrRb70MaV8ID9N8MxzkSYJni2ZJxGRkw3Cc76Xkg7Ij5XpUr1a-HqSy5uhN8tI2ERMuJI99NiTDOZ6fQCXZ6fzk_MiMzEUVlA-FG1VSdoKZDbIFo1gXjBjS-eZtTFA4J1vpKLcBONWtg065xpu0AmFTvEKxXPY6RYdvgTCbC1RhAdRVtKUdUtDB2Wpq1qPBu0EPq6loX-PgBs6HVSo0lGKOkpRZylO4CCu-lbHccEncLgWoM46udSCR3yxCGY0gfeb20GbYojEdBiWWQdvSsiIYhiGeDEKfjP4er-8uuWl72D3fD690BdfZ99ew8M4zzGn7BB2hn6Fb-C-_TP8WvZv07b9B7uE6ew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Acoustic+Droplet+Vaporization+for+Tissue+Characterization+Using+Quantitative+Ultrasound+and+Transfer+Learning&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kaushik%2C+Anuj&rft.au=Fabiilli%2C+Mario+L&rft.au=Myers%2C+Daniel+D&rft.au=Fowlkes%2C+J+Brian&rft.date=2025-06-01&rft.eissn=1558-2531&rft.volume=72&rft.issue=6&rft.spage=1897&rft_id=info:doi/10.1109%2FTBME.2025.3527141&rft_id=info%3Apmid%2F40031047&rft.externalDocID=40031047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |