Bernstein polynomial of recursive regression estimation with censored data
In this paper, we deal with the problem of the regression estimation near the edges under censoring. For this purpose, we consider a new recursive estimator based on the stochastic approximation algorithm and Bernstein polynomials of the regression function when the response random variable is subje...
Uloženo v:
| Vydáno v: | Stochastic models Ročník 38; číslo 3; s. 462 - 487 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Taylor & Francis
03.07.2022
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1532-6349, 1532-4214 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we deal with the problem of the regression estimation near the edges under censoring. For this purpose, we consider a new recursive estimator based on the stochastic approximation algorithm and Bernstein polynomials of the regression function when the response random variable is subject to random right censoring. We give the central limit theorem and the strong pointwise convergence rate for our proposed nonparametric recursive estimators under some mild conditions. Finally, we provide pointwise moderate deviation principles (MDP) for the proposed estimators. We corroborate these theoretical results through simulations as well as the analysis of a real data set. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1532-6349 1532-4214 |
| DOI: | 10.1080/15326349.2022.2063335 |