Bernstein polynomial of recursive regression estimation with censored data

In this paper, we deal with the problem of the regression estimation near the edges under censoring. For this purpose, we consider a new recursive estimator based on the stochastic approximation algorithm and Bernstein polynomials of the regression function when the response random variable is subje...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Stochastic models Ročník 38; číslo 3; s. 462 - 487
Hlavný autor: Slaoui, Yousri
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 03.07.2022
Taylor & Francis Ltd
Predmet:
ISSN:1532-6349, 1532-4214
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we deal with the problem of the regression estimation near the edges under censoring. For this purpose, we consider a new recursive estimator based on the stochastic approximation algorithm and Bernstein polynomials of the regression function when the response random variable is subject to random right censoring. We give the central limit theorem and the strong pointwise convergence rate for our proposed nonparametric recursive estimators under some mild conditions. Finally, we provide pointwise moderate deviation principles (MDP) for the proposed estimators. We corroborate these theoretical results through simulations as well as the analysis of a real data set.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1532-6349
1532-4214
DOI:10.1080/15326349.2022.2063335