Reinforcement-learning-based parallel genetic algorithm for the multi-objective hot-rolling scheduling problem of wide-thick slab

Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional hot-rolling scheduling, hot-rolling scheduling optimisation of wide-thick slabs needs to consider the characteristics of cross rolling and the influ...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 179; p. 113355
Main Authors: Zhang, Zhuolun, Wang, Bailin, Yuan, Shuaipeng, Li, Yiren, Wang, Xiqing, Li, Tieke
Format: Journal Article
Language:English
Published: Elsevier B.V 01.07.2025
Subjects:
ISSN:1568-4946
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional hot-rolling scheduling, hot-rolling scheduling optimisation of wide-thick slabs needs to consider the characteristics of cross rolling and the influence of the reheating furnace, which significantly increase the difficulty of problem-solving. In this paper, the characteristics of cross rolling and the influence of the reheating furnace are analysed, and the hot-rolling scheduling problem of the wide-thick slab (WTS-HRSP) is mapped to a multi-objective asymmetric vehicle routing problem (MAVRP) model. Combined with the multi-objective characteristics of MAVRP, a reinforcement-learning-based parallel genetic algorithm (RPGA) was designed, which implements parallel computation of multiple populations based on the master-slave island model, designs three priority rules to initialise populations, and optimises the parameters of the genetic operation using Q-Learning. Based on the rolling data of the wide-thick slab hot-rolling mill of a Chinese iron and steel group, experiments were conducted to compare RPGA with five advanced multi-objective optimisation algorithms, and the results showed that RPGA had better convergence and stability and was more suitable for the WTS-HRSP. The findings can help optimise hot-rolling scheduling. •The multi-objective hot-rolling scheduling model of wide-thick slab is proposed.•Designing a reinforcement-learning-based parallel genetic algorithm.•Designing a parallel computation based on the master-slave island model.•Designing the priority rules and Q-Learning to improve the genetic algorithm.•Experiments demonstrate the proposed scheduling algorithm has the best performance.
AbstractList Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional hot-rolling scheduling, hot-rolling scheduling optimisation of wide-thick slabs needs to consider the characteristics of cross rolling and the influence of the reheating furnace, which significantly increase the difficulty of problem-solving. In this paper, the characteristics of cross rolling and the influence of the reheating furnace are analysed, and the hot-rolling scheduling problem of the wide-thick slab (WTS-HRSP) is mapped to a multi-objective asymmetric vehicle routing problem (MAVRP) model. Combined with the multi-objective characteristics of MAVRP, a reinforcement-learning-based parallel genetic algorithm (RPGA) was designed, which implements parallel computation of multiple populations based on the master-slave island model, designs three priority rules to initialise populations, and optimises the parameters of the genetic operation using Q-Learning. Based on the rolling data of the wide-thick slab hot-rolling mill of a Chinese iron and steel group, experiments were conducted to compare RPGA with five advanced multi-objective optimisation algorithms, and the results showed that RPGA had better convergence and stability and was more suitable for the WTS-HRSP. The findings can help optimise hot-rolling scheduling. •The multi-objective hot-rolling scheduling model of wide-thick slab is proposed.•Designing a reinforcement-learning-based parallel genetic algorithm.•Designing a parallel computation based on the master-slave island model.•Designing the priority rules and Q-Learning to improve the genetic algorithm.•Experiments demonstrate the proposed scheduling algorithm has the best performance.
ArticleNumber 113355
Author Yuan, Shuaipeng
Wang, Xiqing
Li, Tieke
Li, Yiren
Zhang, Zhuolun
Wang, Bailin
Author_xml – sequence: 1
  givenname: Zhuolun
  orcidid: 0000-0002-2134-9629
  surname: Zhang
  fullname: Zhang, Zhuolun
  email: zhangzl0036@163.com
  organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Bailin
  surname: Wang
  fullname: Wang, Bailin
  email: wangbl@ustb.edu.cn
  organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 3
  givenname: Shuaipeng
  surname: Yuan
  fullname: Yuan, Shuaipeng
  email: shuaipengyuan@163.com
  organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 4
  givenname: Yiren
  surname: Li
  fullname: Li, Yiren
  email: liyiren@hbisco.com
  organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 5
  givenname: Xiqing
  surname: Wang
  fullname: Wang, Xiqing
  email: wangxiqing@njsteel.com.cn
  organization: Plate Division of Nanjing Iron and Steel Group, Nanjing 210044, China
– sequence: 6
  givenname: Tieke
  surname: Li
  fullname: Li, Tieke
  email: tieke@ustb.edu.cn
  organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
BookMark eNp9kMtKAzEUhrOoYKu-gKu8QOpkMldwI8UbCILoOuRy0knNJCVJKy59c6fWlQtX51-c74f_W6CZDx4QuqTFkha0udosRQpqWRZlvaSUsbqeoTmtm45UfdWcokVKm2J67Mtujr5ewHoTooIRfCYORPTWr4kUCTTeiiicA4fX4CFbhYVbh2jzMOKJwXkAPO5ctiTIDahs94CHkEkMzk0lOKkB9O4nbmOQDkYcDP6wGkgerHrHyQl5jk6McAkufu8Zeru7fV09kKfn-8fVzRNRrCgzaUwrTMOk0aanquqbWvemqmWrFAim-kq2su8NrUwnJBNtVxjKGl1WXa3bSjB2hspjr4ohpQiGb6MdRfzktOAHcXzDD-L4QRw_ipug7g-kbBbZBp-jsO5_9PqIwjRqbyHypCx4BdrGyRXXwf6HfwOugZGZ
CitedBy_id crossref_primary_10_1080_15376494_2025_2517255
Cites_doi 10.1016/j.cie.2022.108561
10.1109/TII.2019.2944247
10.1016/j.cie.2022.108293
10.1002/srin.202100331
10.1016/j.eswa.2022.117555
10.1007/s12652-018-0944-7
10.1016/j.asoc.2023.110187
10.1080/00207543.2021.1919780
10.1016/j.cor.2022.105745
10.1016/j.applthermaleng.2018.10.020
10.1016/j.swevo.2023.101236
10.1080/00207540600988048
10.1016/j.eswa.2023.120083
10.1016/0166-3615(92)90069-Y
10.1016/j.cie.2020.106778
10.1109/4235.996017
10.1016/j.cie.2021.107659
10.1109/ACCESS.2021.3058328
10.3724/SP.J.1004.2010.00282
10.1007/s00170-011-3749-9
10.1016/j.cor.2021.105267
10.1016/S0377-2217(97)00277-4
10.1080/00207543.2021.2017054
10.1371/journal.pone.0241077
10.1016/j.swevo.2021.100911
10.1016/S0377-2217(99)00380-X
10.1155/2018/1919438
10.1080/00207543.2021.1987550
10.1016/j.apm.2017.03.067
10.1016/j.future.2017.07.020
10.1016/j.cie.2017.12.013
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2025.113355
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2025_113355
S1568494625006660
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c302t-6f7af63bfdf91c4965d9f45b7ccea3c94b7b99f14f8ab3a780f136d2485d74a33
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001504749900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:51:04 EST 2025
Tue Nov 18 21:26:37 EST 2025
Sat Jul 05 17:12:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective asymmetric vehicle routing model
Parallel genetic algorithm
Q-learning
Island model
Hot rolling scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-6f7af63bfdf91c4965d9f45b7ccea3c94b7b99f14f8ab3a780f136d2485d74a33
ORCID 0000-0002-2134-9629
ParticipantIDs crossref_primary_10_1016_j_asoc_2025_113355
crossref_citationtrail_10_1016_j_asoc_2025_113355
elsevier_sciencedirect_doi_10_1016_j_asoc_2025_113355
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Song, Wu (bib16) 2022
Chen, Yang, Wu (bib6) 2008; 46
Shen, De Pessemier, Martens (bib25) 2021; 161
Jia, Zhu, Yang (bib2) 2012; 61
Sun, Benlic, Li (bib32) 2022; 143
Riquelme, Von Lucken, Baran (bib34) 2015; 2015
Zhang, Meng, Lu (bib22) 2023; 138
Lu, Liu, Zhang (bib21) 2022; 204
Tang, Liu, Rong (bib5) 2000; 124
Zhang, Pan, Gao (bib8) 2018; 116
İLHAN (bib29) 2021; 64
Jiang, Li, Zhang (bib12) 2022; 172
Zhang, Tang, Li (bib24) 2021; 132
Su, Kong, Wang (bib9) 2021; 407
Shi, Liu (bib11) 2021; 9
Zhang, Zhang, Li, Rohaninejad, Tavakkoli-Moghaddam, Vahedi-Nouri (bib20) 2022; 37
Cheng, Tang, Zhang (bib31) 2022; 169
Zhang, Song, Wu (bib15) 2020; 16
Zhou, Li, Chen (bib1) 2022; 93
Chen, Xiufeng, Guohua (bib14) 2020; 15
Lopez, Carter, Gendreau (bib4) 1998; 106
Pan, Chen, Meng (bib7) 2017; 48
Song, Wei, Yang (bib35) 2023; 77
Kosiba, Wright, Cobbs (bib3) 1992; 19
Huo, Liu, Zhang (bib27) 2018; 81
Deb, Pratap, Agarwal (bib28) 2002; 6
Yuan, Li, Wang (bib18) 2023; 32
Yu, Wang, Qu (bib17) 2010; 36
Long, Pardalos, Li (bib23) 2022; 60
Bora, Mariani, Coelho (bib30) 2019; 146
Sutton R.S., Barto A.G. Reinforcement Learning: An Introduction[M]. MIT Press, 2018.
Li, Tian (bib10) 2018; 2018
Zhang, Wang, Yuan, Yağmur, Kesen (bib19) 2023; 227
Chen, Yang, Li (bib26) 2020; 149
Liu, Wan, Gao (bib13) 2019; 10
Su (10.1016/j.asoc.2025.113355_bib9) 2021; 407
Zhou (10.1016/j.asoc.2025.113355_bib1) 2022; 93
Huo (10.1016/j.asoc.2025.113355_bib27) 2018; 81
Shen (10.1016/j.asoc.2025.113355_bib25) 2021; 161
Zhang (10.1016/j.asoc.2025.113355_bib16) 2022
Zhang (10.1016/j.asoc.2025.113355_bib8) 2018; 116
Jiang (10.1016/j.asoc.2025.113355_bib12) 2022; 172
Bora (10.1016/j.asoc.2025.113355_bib30) 2019; 146
Liu (10.1016/j.asoc.2025.113355_bib13) 2019; 10
Long (10.1016/j.asoc.2025.113355_bib23) 2022; 60
Tang (10.1016/j.asoc.2025.113355_bib5) 2000; 124
Chen (10.1016/j.asoc.2025.113355_bib14) 2020; 15
Yuan (10.1016/j.asoc.2025.113355_bib18) 2023; 32
Song (10.1016/j.asoc.2025.113355_bib35) 2023; 77
Jia (10.1016/j.asoc.2025.113355_bib2) 2012; 61
Deb (10.1016/j.asoc.2025.113355_bib28) 2002; 6
İLHAN (10.1016/j.asoc.2025.113355_bib29) 2021; 64
Sun (10.1016/j.asoc.2025.113355_bib32) 2022; 143
Yağmur (10.1016/j.asoc.2025.113355_sbref20) 2023; 61
Pan (10.1016/j.asoc.2025.113355_bib7) 2017; 48
Yu (10.1016/j.asoc.2025.113355_bib17) 2010; 36
Zhang (10.1016/j.asoc.2025.113355_sbref21) 2022; 37
Zhang (10.1016/j.asoc.2025.113355_bib22) 2023; 138
Zhang (10.1016/j.asoc.2025.113355_bib24) 2021; 132
Riquelme (10.1016/j.asoc.2025.113355_bib34) 2015; 2015
Lu (10.1016/j.asoc.2025.113355_bib21) 2022; 204
Cheng (10.1016/j.asoc.2025.113355_bib31) 2022; 169
Shi (10.1016/j.asoc.2025.113355_bib11) 2021; 9
Chen (10.1016/j.asoc.2025.113355_bib26) 2020; 149
10.1016/j.asoc.2025.113355_bib33
Chen (10.1016/j.asoc.2025.113355_bib6) 2008; 46
Lopez (10.1016/j.asoc.2025.113355_bib4) 1998; 106
Kosiba (10.1016/j.asoc.2025.113355_bib3) 1992; 19
Zhang (10.1016/j.asoc.2025.113355_bib15) 2020; 16
Li (10.1016/j.asoc.2025.113355_bib10) 2018; 2018
Zhang (10.1016/j.asoc.2025.113355_sbref19) 2023; 227
Rohaninejad (10.1016/j.asoc.2025.113355_sbref22) 2022; 60
References_xml – volume: 16
  start-page: 2809
  year: 2020
  end-page: 2819
  ident: bib15
  article-title: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm
  publication-title: IEEE Trans. Ind. Inform.
– volume: 116
  start-page: 22
  year: 2018
  end-page: 36
  ident: bib8
  article-title: A hybrid variable neighborhood search algorithm for the hot rolling batch scheduling problem in compact strip production
  publication-title: Comput. Ind. Eng.
– volume: 36
  start-page: 282
  year: 2010
  end-page: 288
  ident: bib17
  article-title: Optimization method of production scheduling for hot rolling of medium-thick slabs
  publication-title: Acta Autom. Sin.
– volume: 407
  year: 2021
  ident: bib9
  article-title: Modeling and application for rolling scheduling problem based on TSP
  publication-title: Appl. Math. Comput.
– volume: 143
  year: 2022
  ident: bib32
  article-title: Reinforcement learning based tabu search for the minimum load coloring problem
  publication-title: Comput. Oper. Res.
– volume: 15
  year: 2020
  ident: bib14
  article-title: Research on hot rolling scheduling problem based on Two-phase Pareto algorithm
  publication-title: PLoS One
– volume: 32
  start-page: 78
  year: 2023
  end-page: 84
  ident: bib18
  article-title: An improved estimation of distributed algorithm for a single machine scheduling problem with re-entrant and group reatures
  publication-title: Operat. Res. and Manag. Sci.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib28
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 19
  ident: bib10
  article-title: Integrated scheduling of reheating furnace and hot rolling based on improved multiobjective differential evolution
  publication-title: Complexity
– volume: 60
  start-page: 3319
  year: 2022
  end-page: 3338
  ident: bib23
  article-title: Level-based multi-objective particle swarm optimizer for integrated production scheduling and vehicle routing decision with inventory holding, delivery, and tardiness costs
  publication-title: Int. J. Prod. Res.
– volume: 37
  start-page: 1827
  year: 2022
  end-page: 1836
  ident: bib20
  article-title: Model and algorithm for rolling planning of hot-rolled slab with reheating furnace production factors
  publication-title: Control Decis.
– volume: 172
  year: 2022
  ident: bib12
  article-title: An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills
  publication-title: Comput. Ind. Eng.
– volume: 46
  start-page: 1955
  year: 2008
  end-page: 1973
  ident: bib6
  article-title: Production scheduling optimization algorithm for the hot rolling processes
  publication-title: Int. J. Prod. Res.
– reference: Sutton R.S., Barto A.G. Reinforcement Learning: An Introduction[M]. MIT Press, 2018.
– volume: 81
  start-page: 492
  year: 2018
  end-page: 504
  ident: bib27
  article-title: An improved multi-cores parallel artificial Bee colony optimization algorithm for parameters calibration of hydrological model
  publication-title: Future Gener. Comput. Syst.
– volume: 48
  start-page: 516
  year: 2017
  end-page: 533
  ident: bib7
  article-title: A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production
  publication-title: Appl. Math. Model.
– start-page: 1
  year: 2022
  end-page: 15
  ident: bib16
  article-title: The hot strip mill scheduling problem with uncertainty: robust optimization models and solution approaches
  publication-title: IEEE Trans. Cybern.
– volume: 93
  year: 2022
  ident: bib1
  article-title: Controlled rolling of X80 pipeline steel in the austenite recrystallization temperature region and its effect on the microstructure and mechanical properties
  publication-title: Steel Res. Int.
– volume: 9
  start-page: 47856
  year: 2021
  end-page: 47863
  ident: bib11
  article-title: Very large-scale neighborhood search for steel hot rolling scheduling problem with slab stack shuffling considerations
  publication-title: IEEE Access
– volume: 124
  start-page: 267
  year: 2000
  end-page: 282
  ident: bib5
  article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex
  publication-title: Eur. J. Oper. Res.
– volume: 169
  year: 2022
  ident: bib31
  article-title: Scheduling flexible manufacturing cell with no-idle flow-lines and job-shop via Q-learning-based genetic algorithm
  publication-title: Comput. Ind. Eng.
– volume: 19
  start-page: 317
  year: 1992
  end-page: 327
  ident: bib3
  article-title: Discrete event sequencing as a traveling salesman problem
  publication-title: Comput. Ind.
– volume: 161
  year: 2021
  ident: bib25
  article-title: A parallel genetic algorithm for multi-objective flexible flowshop scheduling in pasta manufacturing
  publication-title: Comput. Ind. Eng.
– volume: 2015
  year: 2015
  ident: bib34
  article-title: Performance metrics in multi-objective optimization
  publication-title: C
– volume: 64
  year: 2021
  ident: bib29
  article-title: An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem
  publication-title: Swarm Evolut. Comput.
– volume: 61
  start-page: 487
  year: 2012
  end-page: 501
  ident: bib2
  article-title: A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 149
  year: 2020
  ident: bib26
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 146
  start-page: 688
  year: 2019
  end-page: 700
  ident: bib30
  article-title: Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 204
  year: 2022
  ident: bib21
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert Syst. Appl.
– volume: 138
  year: 2023
  ident: bib22
  article-title: Real-time data-driven automatic design of multi-objective evolutionary algorithm: a case study on production scheduling
  publication-title: Appl. Softw. Comput.
– volume: 132
  year: 2021
  ident: bib24
  article-title: A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context
  publication-title: Comput. Oper. Res.
– volume: 106
  start-page: 317
  year: 1998
  end-page: 335
  ident: bib4
  article-title: The hot strip mill production scheduling problem: a tabu search approach
  publication-title: Eur. J. Oper. Res.
– volume: 227
  start-page: 774
  year: 2023
  end-page: 795
  ident: bib19
  article-title: Deep learning-based prediction framework of temperature control time for wide-thick slab hot rolling production
  publication-title: Expert Syst. Appl.
– volume: 77
  year: 2023
  ident: bib35
  article-title: RL-GA: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem
  publication-title: Swarm Evolut. Comput.
– volume: 10
  start-page: 1201
  year: 2019
  end-page: 1216
  ident: bib13
  article-title: Research on modelling and optimization of hot rolling scheduling
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 172
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_bib12
  article-title: An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108561
– ident: 10.1016/j.asoc.2025.113355_bib33
– volume: 16
  start-page: 2809
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2025.113355_bib15
  article-title: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2944247
– volume: 169
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_bib31
  article-title: Scheduling flexible manufacturing cell with no-idle flow-lines and job-shop via Q-learning-based genetic algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108293
– volume: 32
  start-page: 78
  issue: 8
  year: 2023
  ident: 10.1016/j.asoc.2025.113355_bib18
  article-title: An improved estimation of distributed algorithm for a single machine scheduling problem with re-entrant and group reatures
  publication-title: Operat. Res. and Manag. Sci.
– volume: 93
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_bib1
  article-title: Controlled rolling of X80 pipeline steel in the austenite recrystallization temperature region and its effect on the microstructure and mechanical properties
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.202100331
– volume: 204
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_bib21
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117555
– volume: 10
  start-page: 1201
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2025.113355_bib13
  article-title: Research on modelling and optimization of hot rolling scheduling
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0944-7
– volume: 37
  start-page: 1827
  issue: 7
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_sbref21
  article-title: Model and algorithm for rolling planning of hot-rolled slab with reheating furnace production factors
  publication-title: Control Decis.
– volume: 138
  year: 2023
  ident: 10.1016/j.asoc.2025.113355_bib22
  article-title: Real-time data-driven automatic design of multi-objective evolutionary algorithm: a case study on production scheduling
  publication-title: Appl. Softw. Comput.
  doi: 10.1016/j.asoc.2023.110187
– volume: 60
  start-page: 3319
  issue: 11
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_bib23
  article-title: Level-based multi-objective particle swarm optimizer for integrated production scheduling and vehicle routing decision with inventory holding, delivery, and tardiness costs
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1919780
– volume: 143
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_bib32
  article-title: Reinforcement learning based tabu search for the minimum load coloring problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2022.105745
– volume: 146
  start-page: 688
  year: 2019
  ident: 10.1016/j.asoc.2025.113355_bib30
  article-title: Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.020
– volume: 77
  year: 2023
  ident: 10.1016/j.asoc.2025.113355_bib35
  article-title: RL-GA: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2023.101236
– volume: 46
  start-page: 1955
  issue: 7
  year: 2008
  ident: 10.1016/j.asoc.2025.113355_bib6
  article-title: Production scheduling optimization algorithm for the hot rolling processes
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540600988048
– volume: 227
  year: 2023
  ident: 10.1016/j.asoc.2025.113355_sbref19
  article-title: Deep learning-based prediction framework of temperature control time for wide-thick slab hot rolling production
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120083
– volume: 19
  start-page: 317
  issue: 3
  year: 1992
  ident: 10.1016/j.asoc.2025.113355_bib3
  article-title: Discrete event sequencing as a traveling salesman problem
  publication-title: Comput. Ind.
  doi: 10.1016/0166-3615(92)90069-Y
– volume: 149
  year: 2020
  ident: 10.1016/j.asoc.2025.113355_bib26
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106778
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2025.113355_bib28
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.996017
– volume: 161
  year: 2021
  ident: 10.1016/j.asoc.2025.113355_bib25
  article-title: A parallel genetic algorithm for multi-objective flexible flowshop scheduling in pasta manufacturing
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107659
– volume: 9
  start-page: 47856
  year: 2021
  ident: 10.1016/j.asoc.2025.113355_bib11
  article-title: Very large-scale neighborhood search for steel hot rolling scheduling problem with slab stack shuffling considerations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058328
– volume: 36
  start-page: 282
  issue: 02
  year: 2010
  ident: 10.1016/j.asoc.2025.113355_bib17
  article-title: Optimization method of production scheduling for hot rolling of medium-thick slabs
  publication-title: Acta Autom. Sin.
  doi: 10.3724/SP.J.1004.2010.00282
– volume: 61
  start-page: 487
  issue: 5-8
  year: 2012
  ident: 10.1016/j.asoc.2025.113355_bib2
  article-title: A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3749-9
– volume: 132
  year: 2021
  ident: 10.1016/j.asoc.2025.113355_bib24
  article-title: A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105267
– volume: 106
  start-page: 317
  issue: 2
  year: 1998
  ident: 10.1016/j.asoc.2025.113355_bib4
  article-title: The hot strip mill production scheduling problem: a tabu search approach
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(97)00277-4
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_bib16
  article-title: The hot strip mill scheduling problem with uncertainty: robust optimization models and solution approaches
  publication-title: IEEE Trans. Cybern.
– volume: 61
  start-page: 774
  issue: 3
  year: 2023
  ident: 10.1016/j.asoc.2025.113355_sbref20
  article-title: Bi-objective coordinated production and transportation scheduling problem with sustainability: formulation and solution approaches
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.2017054
– volume: 15
  issue: 12
  year: 2020
  ident: 10.1016/j.asoc.2025.113355_bib14
  article-title: Research on hot rolling scheduling problem based on Two-phase Pareto algorithm
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0241077
– volume: 64
  year: 2021
  ident: 10.1016/j.asoc.2025.113355_bib29
  article-title: An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2021.100911
– volume: 2015
  year: 2015
  ident: 10.1016/j.asoc.2025.113355_bib34
  article-title: Performance metrics in multi-objective optimization
– volume: 124
  start-page: 267
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2025.113355_bib5
  article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00380-X
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2025.113355_bib10
  article-title: Integrated scheduling of reheating furnace and hot rolling based on improved multiobjective differential evolution
  publication-title: Complexity
  doi: 10.1155/2018/1919438
– volume: 60
  start-page: 6205
  issue: 20
  year: 2022
  ident: 10.1016/j.asoc.2025.113355_sbref22
  article-title: A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1987550
– volume: 48
  start-page: 516
  year: 2017
  ident: 10.1016/j.asoc.2025.113355_bib7
  article-title: A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.03.067
– volume: 81
  start-page: 492
  year: 2018
  ident: 10.1016/j.asoc.2025.113355_bib27
  article-title: An improved multi-cores parallel artificial Bee colony optimization algorithm for parameters calibration of hydrological model
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.07.020
– volume: 116
  start-page: 22
  year: 2018
  ident: 10.1016/j.asoc.2025.113355_bib8
  article-title: A hybrid variable neighborhood search algorithm for the hot rolling batch scheduling problem in compact strip production
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.12.013
– volume: 407
  year: 2021
  ident: 10.1016/j.asoc.2025.113355_bib9
  article-title: Modeling and application for rolling scheduling problem based on TSP
  publication-title: Appl. Math. Comput.
SSID ssj0016928
Score 2.4418874
Snippet Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113355
SubjectTerms Hot rolling scheduling
Island model
Multi-objective asymmetric vehicle routing model
Parallel genetic algorithm
Q-learning
Title Reinforcement-learning-based parallel genetic algorithm for the multi-objective hot-rolling scheduling problem of wide-thick slab
URI https://dx.doi.org/10.1016/j.asoc.2025.113355
Volume 179
WOSCitedRecordID wos001504749900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJR-4Va7SxInj44IWAVqtEFpEl0uUxPY23ZBU3WTZKz-Df8s4sZ1SoGIPXKLKiqdR5uvMeDozH0IvKVdCppFPPBlLQiPKSQZRCOEszMADBRFLu5H5R-z4OJ7P-YfR6IfthbksWVXFV1d89V9VDWugbN06ew11O6GwAJ9B6XAFtcP1nxT_UXbDUPMu70cMK8QZ0e5KTPSk77KUpWZOlt2s1vKsXhfN4qurN-xKDEmdLXtTOFnUDVmb0d1wFAbXZDrYOyYaHWx-K4Qkum7-fAIAyzbjXRvkXoC178rX28b6ys1s9ZdFC-_E4fSzWX6VFmXhVk9bk6xdtGmxkoOYo64i4bSwbW0mieGHruDV2d0oJpSbbKQ1zD3NjDGtMzhN9xN9f7P6fQJiOU0B0FMtfjrc_OuI7S3X5woSba3bMtEyEi0j6WXcQHs-C3k8RnsH7w7n791fVBHviHvdk5uOrL54cPtJ_hz1bEQyJ3fRbXMEwQc9dO6hkazuozuW3gMba_8Afd-FJGyRhA2SsEMShj0YkIS3kIQ3kIQHJGGDJFwrPCAJayQ9RJ_eHJ68fksMYwfJA89vSKRYqqIgU0LxWa6pCARXNMxYnss0yDnNWMa5mlEVp1mQsthTYA6EHqsnGE2D4BEaV3UlHyMcChkKHQwHPKe-oNzz8iyUml6NCcnVPprZN5rkZpy9ZlUpk7_rch9N3J5VP8xl592hVVRiwtE-zEwAdzv2PbnWtzxFt4YfxDM0btatfI5u5pdNcbF-YUD3E2f8sbI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement-learning-based+parallel+genetic+algorithm+for+the+multi-objective+hot-rolling+scheduling+problem+of+wide-thick+slab&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Zhuolun&rft.au=Wang%2C+Bailin&rft.au=Yuan%2C+Shuaipeng&rft.au=Li%2C+Yiren&rft.date=2025-07-01&rft.issn=1568-4946&rft.volume=179&rft.spage=113355&rft_id=info:doi/10.1016%2Fj.asoc.2025.113355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2025_113355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon