Subgradient of distance functions with applications to Lipschitzian stability
The paper is devoted to studying generalized differential properties of distance functions that play a remarkable role in variational analysis, optimization, and their applications. The main object under consideration is the distance function of two variables in Banach spaces that signifies the dist...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 104; H. 2-3; S. 635 - 668 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Heidelberg
Springer
01.11.2005
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The paper is devoted to studying generalized differential properties of distance functions that play a remarkable role in variational analysis, optimization, and their applications. The main object under consideration is the distance function of two variables in Banach spaces that signifies the distance from a point to a moving set. We derive various relationships between Frechet-type subgradients and limiting (basic and singular) subgradients of this distance function and corresponding generalized normals to sets and coderivatives of set-valued mappings. These relationships are essentially different depending on whether or not the reference point belongs to the graph of the involved set-valued mapping. Our major results are new even for subdifferentiation of the standard distance function signifying the distance between a point and a fixed set in finite-dimensional spaces. The subdifferential results obtained are applied to deriving efficient dual-space conditions for the local Lipschitz continuity of distance functions generated by set-valued mappings, in particular, by those arising in parametric constrained optimization. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-005-0632-1 |