Theory and Methods Related to the Singular-Function Expansion and Landweber's Iteration for Integral Equations of the First Kind
For the Fredholm integral equation of the first kind, written notationally as Kf = g, g ∈ L2 [ 0, 1 ], we study the behavior of the iteration $\hat{f}_k = \hat{f}_{k - 1} + DK^\ast(g - K \hat{f}_{k - 1}),\quad k = 1, 2, \cdots,$ both with respect to its convergence properties and its response to sin...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 11; číslo 4; s. 798 - 825 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.09.1974
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For the Fredholm integral equation of the first kind, written notationally as Kf = g, g ∈ L2 [ 0, 1 ], we study the behavior of the iteration $\hat{f}_k = \hat{f}_{k - 1} + DK^\ast(g - K \hat{f}_{k - 1}),\quad k = 1, 2, \cdots,$ both with respect to its convergence properties and its response to singular functions of K. Here K* is the adjoint of K, f̂0 is a suitable starting function and D is a fixed linear operator to be chosen. The general theory of singular functions is interpreted and extended for the study of the iteration, and a quantitative method of choosing D to shape the response to singular functions of K is derived. Several specific matrix and integral-equation examples are presented. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0711066 |