Review and comparative analysis of machine learning libraries for machine learning

The article is an overview. We carry out the comparison of actual machine learning libraries that can be used the neural networks development. The first part of the article gives a brief description of TensorFlow, PyTorch, Theano, Keras, SciKit Learn libraries, SciPy library stack. An overview of th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete and continuous models and applied computational science Ročník 27; číslo 4; s. 305 - 315
Hlavní autoři: Gevorkyan, Migran N., Demidova, Anastasia V., Demidova, Tatiana S., Sobolev, Anton A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Peoples’ Friendship University of Russia (RUDN University) 15.12.2019
Témata:
ISSN:2658-4670, 2658-7149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The article is an overview. We carry out the comparison of actual machine learning libraries that can be used the neural networks development. The first part of the article gives a brief description of TensorFlow, PyTorch, Theano, Keras, SciKit Learn libraries, SciPy library stack. An overview of the scope of these libraries and the main technical characteristics, such as performance, supported programming languages, the current state of development is given. In the second part of the article, a comparison of five libraries is carried out on the example of a multilayer perceptron, which is applied to the problem of handwritten digits recognizing. This problem is well known and well suited for testing different types of neural networks. The study time is compared depending on the number of epochs and the accuracy of the classifier. The results of the comparison are presented in the form of graphs of training time and accuracy depending on the number of epochs and in tabular form.
ISSN:2658-4670
2658-7149
DOI:10.22363/2658-4670-2019-27-4-305-315