(LB)-spaces of vector-valued continuous functions

We consider a question posed by Bierstedt and Schmets as to whether, for an (LB)-space E and a compact space K, the space C(K, E) of E-valued continuous functions endowed with the uniform topology is again an (LB)-space. We present proofs for the case of hilbertizable Montel (LB)-spaces as well as f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society Jg. 40; H. 3; S. 505 - 515
Hauptverfasser: Frerick, Leonhard, Wengenroth, Jochen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford University Press 01.06.2008
ISSN:0024-6093, 1469-2120
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a question posed by Bierstedt and Schmets as to whether, for an (LB)-space E and a compact space K, the space C(K, E) of E-valued continuous functions endowed with the uniform topology is again an (LB)-space. We present proofs for the case of hilbertizable Montel (LB)-spaces as well as for the case where E is a weighted space of sequences or functions which even yield that Schwartz's ε-product Y ε E is an (LB)-space for every -space Y. Although the problem for general (LB)-spaces remains open, we provide several relations and reductions. For instance, it is enough to consider curves, that is, the most natural case K=[0, 1] or, for the class of hilbertizable (LB)-spaces with metrizable bounded sets, the Stone–Čech compactification of ℕ.
Bibliographie:istex:4F5BC09DBF686BB262C353FF4426F30B25251BC1
ArticleID:bdn033
2000 Mathematics Subject Classification 46E40, 46A04, 46A13.
ark:/67375/HXZ-3Z1Q6QXD-0
46E40, 46A04, 46A13.
2000
Mathematics Subject Classification
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bdn033