Routing by matching on convex pieces of grid graphs

The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as hypercubes. It gives the minimum number of routing steps needed to sort a set of distinct tokens, placed one on each vertex, where each routing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational geometry : theory and applications Ročník 104; s. 101862
Hlavní autori: Alpert, H., Barnes, R., Bell, S., Mauro, A., Nevo, N., Tucker, N., Yang, H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2022
Predmet:
ISSN:0925-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as hypercubes. It gives the minimum number of routing steps needed to sort a set of distinct tokens, placed one on each vertex, where each routing step swaps a set of disjoint pairs of adjacent tokens. Our main theorem generalizes the known estimate that a rectangular grid graph R with width w(R) and height h(R) satisfies rt(R)∈O(w(R)+h(R)). We show that for the subgraph P of the infinite square lattice enclosed by any convex polygon, we have rt(P)∈O(w(P)+h(P)).
ISSN:0925-7721
DOI:10.1016/j.comgeo.2022.101862