Routing by matching on convex pieces of grid graphs

The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as hypercubes. It gives the minimum number of routing steps needed to sort a set of distinct tokens, placed one on each vertex, where each routing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational geometry : theory and applications Ročník 104; s. 101862
Hlavní autoři: Alpert, H., Barnes, R., Bell, S., Mauro, A., Nevo, N., Tucker, N., Yang, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2022
Témata:
ISSN:0925-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as hypercubes. It gives the minimum number of routing steps needed to sort a set of distinct tokens, placed one on each vertex, where each routing step swaps a set of disjoint pairs of adjacent tokens. Our main theorem generalizes the known estimate that a rectangular grid graph R with width w(R) and height h(R) satisfies rt(R)∈O(w(R)+h(R)). We show that for the subgraph P of the infinite square lattice enclosed by any convex polygon, we have rt(P)∈O(w(P)+h(P)).
ISSN:0925-7721
DOI:10.1016/j.comgeo.2022.101862