Multilingual Machine Translation: Deep Analysis of Language-Specific Encoder-Decoders
State-of-the-art multilingual machine translation relies on a shared encoder-decoder. In this paper, we propose an alternative approach based on language-specific encoder-decoders, which can be easily extended to new languages by learning their corresponding modules. To establish a common interlingu...
Uloženo v:
| Vydáno v: | The Journal of artificial intelligence research Ročník 73; s. 1535 - 1552 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Francisco
AI Access Foundation
01.01.2022
|
| Témata: | |
| ISSN: | 1076-9757, 1076-9757, 1943-5037 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | State-of-the-art multilingual machine translation relies on a shared encoder-decoder. In this paper, we propose an alternative approach based on language-specific encoder-decoders, which can be easily extended to new languages by learning their corresponding modules. To establish a common interlingua representation, we simultaneously train N initial languages. Our experiments show that the proposed approach improves over the shared encoder-decoder for the initial languages and when adding new languages, without the need to retrain the remaining modules. All in all, our work closes the gap between shared and language-specific encoder-decoders, advancing toward modular multilingual machine translation systems that can be flexibly extended in lifelong learning settings. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1076-9757 1076-9757 1943-5037 |
| DOI: | 10.1613/jair.1.12699 |