Application of modified wavelet and homotopy perturbation methods to nonlinear oscillation problems

In this paper, an accurate and efficient Chebyshev wavelet-based technique is successfully employed to solve the nonlinear oscillation problems. Numerical examples are also provided to illustrate the efficiency and performance of these methods. Homotopy perturbation methods may be viewed as an exten...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and nonlinear sciences Ročník 4; číslo 2; s. 351 - 364
Hlavní autori: Selvi, M. Salai Mathi, Rajendran, L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Beirut Sciendo 01.07.2019
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Predmet:
ISSN:2444-8656, 2444-8656
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, an accurate and efficient Chebyshev wavelet-based technique is successfully employed to solve the nonlinear oscillation problems. Numerical examples are also provided to illustrate the efficiency and performance of these methods. Homotopy perturbation methods may be viewed as an extension and generalization of the existing methods for solving nonlinear equations. In addition, the use of Chebyshev wavelet is found to be simple, flexible, accurate, efficient and less computational cost. Our analytical results are compared with simulation results and found to be satisfactory.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2444-8656
2444-8656
DOI:10.2478/AMNS.2019.2.00030