Convergence analysis of a non-negative matrix factorization algorithm based on Gibbs random field modeling

Non-negative matrix factorization (NMF) is a new approach to deal with the multivariate nonnegative data. Although the classic multiplicative update algorithm can solve the NMF problems, it fails to find sparse and localized object parts. Then a Gibbs random field (GRF) modeling based NMF algorithm,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics & computing Vol. 42; no. 1-2; pp. 491 - 508
Main Authors: Yang, Chenxue, Ye, Mao, Liu, Zijian
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.07.2013
Springer Nature B.V
Subjects:
ISSN:1598-5865, 1865-2085
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-negative matrix factorization (NMF) is a new approach to deal with the multivariate nonnegative data. Although the classic multiplicative update algorithm can solve the NMF problems, it fails to find sparse and localized object parts. Then a Gibbs random field (GRF) modeling based NMF algorithm, called the GRF-NMF algorithm, try to directly model the prior object structure of the components into the NMF problem. In this paper, the convergence of the GRF-NMF algorithm and its advantages are investigated. Based on a classic model, the equilibrium points are obtained. Some invariant sets are constructed to prepare for the analysis of the convergence of the GRF-NMF algorithm. Then using stability theory of the equilibrium point, the convergence of the algorithm is proved and the convergence conditions of the algorithm are obtained. We theoretically present the advantages of the GRF-NMF algorithm in the end.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-013-0646-4