Convergence analysis of a non-negative matrix factorization algorithm based on Gibbs random field modeling

Non-negative matrix factorization (NMF) is a new approach to deal with the multivariate nonnegative data. Although the classic multiplicative update algorithm can solve the NMF problems, it fails to find sparse and localized object parts. Then a Gibbs random field (GRF) modeling based NMF algorithm,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of applied mathematics & computing Ročník 42; číslo 1-2; s. 491 - 508
Hlavní autori: Yang, Chenxue, Ye, Mao, Liu, Zijian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.07.2013
Springer Nature B.V
Predmet:
ISSN:1598-5865, 1865-2085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Non-negative matrix factorization (NMF) is a new approach to deal with the multivariate nonnegative data. Although the classic multiplicative update algorithm can solve the NMF problems, it fails to find sparse and localized object parts. Then a Gibbs random field (GRF) modeling based NMF algorithm, called the GRF-NMF algorithm, try to directly model the prior object structure of the components into the NMF problem. In this paper, the convergence of the GRF-NMF algorithm and its advantages are investigated. Based on a classic model, the equilibrium points are obtained. Some invariant sets are constructed to prepare for the analysis of the convergence of the GRF-NMF algorithm. Then using stability theory of the equilibrium point, the convergence of the algorithm is proved and the convergence conditions of the algorithm are obtained. We theoretically present the advantages of the GRF-NMF algorithm in the end.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-013-0646-4