Grobner Bases for Lattices and an Algebraic Decoding Algorithm

In this paper we present Grobner bases for lattices given in a general form, including integer and non-integer lattices. Grdot{o}bner bases for binary linear codes were introduced by Borges-Quintana et al. . We extend their work to non-binary group block codes. Then, given a lattice Λ and its associ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 61; číslo 4; s. 1222 - 1230
Hlavní autori: Aliasgari, M., Sadeghi, M., Panario, D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.04.2013
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0090-6778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we present Grobner bases for lattices given in a general form, including integer and non-integer lattices. Grdot{o}bner bases for binary linear codes were introduced by Borges-Quintana et al. . We extend their work to non-binary group block codes. Then, given a lattice Λ and its associated label code L, which is a group code, we define an ideal for L. A Grobner basis is assigned to Λ as the Grobner basis of its label code L. Since the associated label code for integer and non-integer lattices are group codes, the assigned Grobner bases can be obtained for both cases. Using this Grobner basis an algebraic decoding algorithm is introduced. We provide an example of the decoding method for a lower dimension lattice. We explain that the complexity of this decoding method depends on the division algorithm and show this decoding method has polynomial time complexity. Experiments for some versions of root lattices (E_7 and E_8) show that for low SNR the performance of these lattices is near to the lower bounds given in .
ISSN:0090-6778
DOI:10.1109/TCOMM.2013.13.120317