EDAspy: An extensible python package for estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy provides different state-of-the-art implementations of EDAs including the recent semiparametric EDA. The implementations are modularly built...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 598; S. 128043
Hauptverfasser: Soloviev, Vicente P., Larrañaga, Pedro, Bielza, Concha
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 14.09.2024
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy provides different state-of-the-art implementations of EDAs including the recent semiparametric EDA. The implementations are modularly built, allowing for easy extension and the selection of different alternatives, as well as interoperability with new components. EDAspy is totally free and open-source under the MIT license.
AbstractList Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy provides different state-of-the-art implementations of EDAs including the recent semiparametric EDA. The implementations are modularly built, allowing for easy extension and the selection of different alternatives, as well as interoperability with new components. EDAspy is totally free and open-source under the MIT license.
ArticleNumber 128043
Author Bielza, Concha
Larrañaga, Pedro
Soloviev, Vicente P.
Author_xml – sequence: 1
  givenname: Vicente P.
  orcidid: 0000-0003-0050-0235
  surname: Soloviev
  fullname: Soloviev, Vicente P.
  email: vicente.perez.soloviev@alumnos.upm.es
– sequence: 2
  givenname: Pedro
  surname: Larrañaga
  fullname: Larrañaga, Pedro
– sequence: 3
  givenname: Concha
  surname: Bielza
  fullname: Bielza, Concha
BookMark eNp9kE1OwzAUhC0EEm3hBixygQT7OU1jFkhVKT9SBRtYW47z3Lq0dmS7iN6elLBmNZqRZjT6xuTceYeE3DBaMMqq223h8KD9vgAKZcGgpiU_IyNWzyCvoa7OyYgKmObAGVyScYxbStmMgRiR1-XDPHbHu2zuMvxO6KJtdph1x7TxLuuU_lRrzIwPGcZk9yrZPvYma21MwTaHX692ax9s2uzjFbkwahfx-k8n5ONx-b54zldvTy-L-SrXnLKUA5Y150bU2GBDlQIqpsaYRuOMVahF1fJWGzBCoKEUkKuKoRI4FW0FVQl8QsphVwcfY0Aju9C_C0fJqDwxkVs5MJEnJnJg0tfuhxr2374sBhm1RaextQF1kq23_w_8AHyPcAM
Cites_doi 10.1080/00401706.2000.10485979
10.18637/jss.v035.i07
10.1038/s41586-020-2649-2
10.1145/3520304.3533963
10.1186/1756-0381-1-6
10.1145/3040718.3040724
10.1007/s10710-019-09367-z
10.1016/j.neucom.2022.06.112
10.1007/s10878-022-00879-6
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.neucom.2024.128043
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
ExternalDocumentID 10_1016_j_neucom_2024_128043
S0925231224008142
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c301t-2e4833f98ebeb0aa2095fffbce716ec96d3dcf2f99ef002e3a61ea9e59d626423
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 06:33:59 EST 2025
Sat Aug 03 15:32:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Benchmarking
Bayesian network
Evolutionary algorithm
Estimation of distribution algorithm
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c301t-2e4833f98ebeb0aa2095fffbce716ec96d3dcf2f99ef002e3a61ea9e59d626423
ORCID 0000-0003-0050-0235
OpenAccessLink https://dx.doi.org/10.1016/j.neucom.2024.128043
ParticipantIDs crossref_primary_10_1016_j_neucom_2024_128043
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_128043
PublicationCentury 2000
PublicationDate 2024-09-14
PublicationDateYYYYMMDD 2024-09-14
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Armañanzas, Inza, Santana, Saeys, Flores, Lozano, de Peer, Blanco, Robles, Bielza, Larrañaga (b3) 2008; 1
Atienza, Bielza, Larrañaga (b20) 2022; 504
McKerns, Aivazis (b23) 2010
Santana, Bielza, Larrañaga, Lozano, Echegoyen, Mendiburu, Armananzas, Shakya (b24) 2010; 35
Soloviev, Larrañaga, Bielza (b5) 2022; 44
Coletti, Scott, Bassett (b26) 2020
Luo, Qian (b14) 2009
Dasgupta, Michalewicz (b2) 2013
Mühlenbein, Bendisch, Voigt (b13) 1996
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b21) 2020; 585
Ceberio, Mendiburu, Lozano (b4) 2022
Mühlenbein, Paass (b12) 1996
McKerns, Strand, Sullivan, Fang, Aivazis (b22) 2012
M.S. Krejca, C. Witt, Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax, in: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 2017, pp. 65–79.
Tonda (b25) 2020; 21
McKay, Beckman, Conover (b19) 2000
V.P. Soloviev, P. Larrañaga, C. Bielza, Quantum parametric circuit optimization with estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2022, pp. 2247–2250.
Koller, Friedman (b9) 2009
Uribe, Doerr, Witt, Soloviev (b8) 2022
Larrañaga, Etxeberria, A. Lozano, M. Peña (b16) 2000
Soloviev, Bielza, Larrañaga (b17) 2023
Larrañaga, Lozano (b1) 2001
Larrañaga, Bielza (b7) 2023
Liang, Qu, Suganthan (b11) 2013
Baluja (b15) 1994
M. Pelikan, D.E. Goldberg, E. Cantú-Paz, BOA: The Bayesian optimization algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 1, 1999, pp. 525–532.
Dasgupta (10.1016/j.neucom.2024.128043_b2) 2013
10.1016/j.neucom.2024.128043_b6
10.1016/j.neucom.2024.128043_b18
Harris (10.1016/j.neucom.2024.128043_b21) 2020; 585
Mühlenbein (10.1016/j.neucom.2024.128043_b12) 1996
Liang (10.1016/j.neucom.2024.128043_b11) 2013
Koller (10.1016/j.neucom.2024.128043_b9) 2009
Coletti (10.1016/j.neucom.2024.128043_b26) 2020
McKerns (10.1016/j.neucom.2024.128043_b23) 2010
Ceberio (10.1016/j.neucom.2024.128043_b4) 2022
Uribe (10.1016/j.neucom.2024.128043_b8) 2022
Atienza (10.1016/j.neucom.2024.128043_b20) 2022; 504
Tonda (10.1016/j.neucom.2024.128043_b25) 2020; 21
Larrañaga (10.1016/j.neucom.2024.128043_b7) 2023
Soloviev (10.1016/j.neucom.2024.128043_b17) 2023
Larrañaga (10.1016/j.neucom.2024.128043_b1) 2001
Soloviev (10.1016/j.neucom.2024.128043_b5) 2022; 44
McKay (10.1016/j.neucom.2024.128043_b19) 2000
Mühlenbein (10.1016/j.neucom.2024.128043_b13) 1996
McKerns (10.1016/j.neucom.2024.128043_b22) 2012
Baluja (10.1016/j.neucom.2024.128043_b15) 1994
Armañanzas (10.1016/j.neucom.2024.128043_b3) 2008; 1
Luo (10.1016/j.neucom.2024.128043_b14) 2009
Larrañaga (10.1016/j.neucom.2024.128043_b16) 2000
10.1016/j.neucom.2024.128043_b10
Santana (10.1016/j.neucom.2024.128043_b24) 2010; 35
References_xml – volume: 504
  start-page: 204
  year: 2022
  end-page: 209
  ident: b20
  article-title: PyBNesian: An extensible python package for Bayesian networks
  publication-title: Neurocomputing
– volume: 21
  start-page: 269
  year: 2020
  end-page: 272
  ident: b25
  article-title: Inspyred: Bio-inspired algorithms in Python
  publication-title: Genet. Program. Evol. Mach.
– volume: 44
  start-page: 1077
  year: 2022
  end-page: 1098
  ident: b5
  article-title: Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables
  publication-title: J. Comb. Optim.
– year: 2022
  ident: b8
  article-title: Estimation-of-Distribution Algorithms: Theory and Applications (Dagstuhl Seminar 22182)
– year: 1994
  ident: b15
  article-title: Population-based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning
– reference: M.S. Krejca, C. Witt, Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax, in: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 2017, pp. 65–79.
– year: 2023
  ident: b17
  article-title: Semiparametric estimation of distribution algorithms for continuous optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2009
  ident: b9
  article-title: Probabilistic Graphical Models: Principles and Techniques
– start-page: 178
  year: 1996
  end-page: 187
  ident: b12
  article-title: From recombination of genes to the estimation of distributions I. Binary parameters
  publication-title: International Conference on Parallel Problem Solving from Nature
– start-page: 188
  year: 1996
  end-page: 197
  ident: b13
  article-title: From recombination of genes to the estimation of distributions II. Continuous parameters
  publication-title: International Conference on Parallel Problem Solving from Nature
– start-page: 1
  year: 2022
  end-page: 15
  ident: b4
  article-title: A roadmap for solving optimization problems with estimation of distribution algorithms
  publication-title: Nat. Comput.
– start-page: 490
  year: 2013
  end-page: 523
  ident: b11
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
– year: 2023
  ident: b7
  article-title: Estimation of distribution algorithms in machine learning: A survey
  publication-title: IEEE Trans. Evol. Comput.
– year: 2013
  ident: b2
  article-title: Evolutionary Algorithms in Engineering Applications
– start-page: 1571
  year: 2020
  end-page: 1579
  ident: b26
  article-title: Library for evolutionary algorithms in Python (LEAP)
  publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
– year: 2010
  ident: b23
  article-title: Pathos: A framework for heterogeneous computing
– volume: 1
  start-page: 1
  year: 2008
  end-page: 12
  ident: b3
  article-title: A review of estimation of distribution algorithms in bioinformatics
  publication-title: BioData Min.
– year: 2001
  ident: b1
  article-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
– year: 2000
  ident: b16
  article-title: Optimization in continuous domains by learning and simulation of Gaussian networks
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion
– reference: V.P. Soloviev, P. Larrañaga, C. Bielza, Quantum parametric circuit optimization with estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2022, pp. 2247–2250.
– reference: M. Pelikan, D.E. Goldberg, E. Cantú-Paz, BOA: The Bayesian optimization algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 1, 1999, pp. 525–532.
– start-page: 55
  year: 2000
  end-page: 61
  ident: b19
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 35
  start-page: 1
  year: 2010
  end-page: 30
  ident: b24
  article-title: Mateda-2.0: A MATLAB package for the implementation and analysis of estimation of distribution algorithms
  publication-title: J. Stat. Softw.
– year: 2012
  ident: b22
  article-title: Building a framework for predictive science
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b21
  article-title: Array programming with NumPy
  publication-title: Nature
– start-page: 1526
  year: 2009
  end-page: 1531
  ident: b14
  article-title: Evolutionary algorithm using kernel density estimation model in continuous domain
  publication-title: 2009 7th Asian Control Conference
– ident: 10.1016/j.neucom.2024.128043_b18
– start-page: 55
  year: 2000
  ident: 10.1016/j.neucom.2024.128043_b19
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– start-page: 490
  year: 2013
  ident: 10.1016/j.neucom.2024.128043_b11
– year: 2023
  ident: 10.1016/j.neucom.2024.128043_b17
  article-title: Semiparametric estimation of distribution algorithms for continuous optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 35
  start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2024.128043_b24
  article-title: Mateda-2.0: A MATLAB package for the implementation and analysis of estimation of distribution algorithms
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v035.i07
– year: 2022
  ident: 10.1016/j.neucom.2024.128043_b8
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.neucom.2024.128043_b21
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.128043_b4
  article-title: A roadmap for solving optimization problems with estimation of distribution algorithms
  publication-title: Nat. Comput.
– year: 2000
  ident: 10.1016/j.neucom.2024.128043_b16
  article-title: Optimization in continuous domains by learning and simulation of Gaussian networks
– start-page: 1571
  year: 2020
  ident: 10.1016/j.neucom.2024.128043_b26
  article-title: Library for evolutionary algorithms in Python (LEAP)
– start-page: 178
  year: 1996
  ident: 10.1016/j.neucom.2024.128043_b12
  article-title: From recombination of genes to the estimation of distributions I. Binary parameters
– ident: 10.1016/j.neucom.2024.128043_b6
  doi: 10.1145/3520304.3533963
– start-page: 1526
  year: 2009
  ident: 10.1016/j.neucom.2024.128043_b14
  article-title: Evolutionary algorithm using kernel density estimation model in continuous domain
– year: 1994
  ident: 10.1016/j.neucom.2024.128043_b15
– volume: 1
  start-page: 1
  year: 2008
  ident: 10.1016/j.neucom.2024.128043_b3
  article-title: A review of estimation of distribution algorithms in bioinformatics
  publication-title: BioData Min.
  doi: 10.1186/1756-0381-1-6
– year: 2010
  ident: 10.1016/j.neucom.2024.128043_b23
– ident: 10.1016/j.neucom.2024.128043_b10
  doi: 10.1145/3040718.3040724
– volume: 21
  start-page: 269
  issue: 1–2
  year: 2020
  ident: 10.1016/j.neucom.2024.128043_b25
  article-title: Inspyred: Bio-inspired algorithms in Python
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-019-09367-z
– year: 2012
  ident: 10.1016/j.neucom.2024.128043_b22
– volume: 504
  start-page: 204
  year: 2022
  ident: 10.1016/j.neucom.2024.128043_b20
  article-title: PyBNesian: An extensible python package for Bayesian networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.112
– volume: 44
  start-page: 1077
  issue: 2
  year: 2022
  ident: 10.1016/j.neucom.2024.128043_b5
  article-title: Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-022-00879-6
– start-page: 188
  year: 1996
  ident: 10.1016/j.neucom.2024.128043_b13
  article-title: From recombination of genes to the estimation of distributions II. Continuous parameters
– year: 2009
  ident: 10.1016/j.neucom.2024.128043_b9
– year: 2001
  ident: 10.1016/j.neucom.2024.128043_b1
– year: 2013
  ident: 10.1016/j.neucom.2024.128043_b2
– year: 2023
  ident: 10.1016/j.neucom.2024.128043_b7
  article-title: Estimation of distribution algorithms in machine learning: A survey
  publication-title: IEEE Trans. Evol. Comput.
SSID ssj0017129
Score 2.4225886
Snippet Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128043
SubjectTerms Bayesian network
Benchmarking
Estimation of distribution algorithm
Evolutionary algorithm
Title EDAspy: An extensible python package for estimation of distribution algorithms
URI https://dx.doi.org/10.1016/j.neucom.2024.128043
Volume 598
WOSCitedRecordID wos001362095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF7R0EMvpfSh0pf20FvkKF4ntpeboalaDlGkUik3a-2dLUmDHTkJAn59Zx-2A1QIDlysaOWsV55v5-XZbwj5GgvNmoVhCdqu0BswjFmzuC9RGfYjpelblMpMs4loPI6nUz5xpUMr004gKor48pIvn1TUOIbC1kdnHyHuZlIcwN8odLyi2PH6IMGPviWr5ZVL-JkcN6J-Ad3llaYJ6GKM_FfX6Riqb9zf543PKDWHrmt_1RWLP2U1W585MvN5TfK0QYNnGkG4FENyrpkWpIZVk1L4hQoVze2FqaGd6fJP6E56TemPqCqhv88f-cJmdScgq7LN1sPi2gwfl0V-JrbTEmygayjscdA6v8iGHjqPN1Tt0HacdsoSTWPfcjTd0eM2pTDvFbDRRT36Ab329pu02bfMWVNkWNevzVM7S6pnSe0sz8gui3A1HbKb_BxNT5oPT5HPLD2jW3192tKUBN5dzf-9mS0P5fQVeelCC5pYSOyTHShek726bQd1WvwNGVuEHNKkoC0-qMUHdfigiA_a4oOWim7jg7b4eEt-fx-dHv_wXFsNL0dtvvYYDOIgUDzG_Zv1hWDoZSvckjlg7Aw5D2Ugc8UU56DQXkIgQh8EhyGXGP2i-_2OdIqygPeEmnYFYRZKCPwB8EjkWQBSMR4q7gMPDohXv550adlT0vvEckCi-h2mzgO0nl2KwLj3nx8e-aSP5EWL2k-ks6428Jk8zy_Ws1X1xaHiH4Kbfpo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EDAspy%3A+An+extensible+python+package+for+estimation+of+distribution+algorithms&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soloviev%2C+Vicente+P.&rft.au=Larra%C3%B1aga%2C+Pedro&rft.au=Bielza%2C+Concha&rft.date=2024-09-14&rft.issn=0925-2312&rft.volume=598&rft.spage=128043&rft_id=info:doi/10.1016%2Fj.neucom.2024.128043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_128043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon