EDAspy: An extensible python package for estimation of distribution algorithms
Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy provides different state-of-the-art implementations of EDAs including the recent semiparametric EDA. The implementations are modularly built...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 598; s. 128043 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
14.09.2024
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy provides different state-of-the-art implementations of EDAs including the recent semiparametric EDA. The implementations are modularly built, allowing for easy extension and the selection of different alternatives, as well as interoperability with new components. EDAspy is totally free and open-source under the MIT license. |
|---|---|
| AbstractList | Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy provides different state-of-the-art implementations of EDAs including the recent semiparametric EDA. The implementations are modularly built, allowing for easy extension and the selection of different alternatives, as well as interoperability with new components. EDAspy is totally free and open-source under the MIT license. |
| ArticleNumber | 128043 |
| Author | Bielza, Concha Larrañaga, Pedro Soloviev, Vicente P. |
| Author_xml | – sequence: 1 givenname: Vicente P. orcidid: 0000-0003-0050-0235 surname: Soloviev fullname: Soloviev, Vicente P. email: vicente.perez.soloviev@alumnos.upm.es – sequence: 2 givenname: Pedro surname: Larrañaga fullname: Larrañaga, Pedro – sequence: 3 givenname: Concha surname: Bielza fullname: Bielza, Concha |
| BookMark | eNp9kE1OwzAUhC0EEm3hBixygQT7OU1jFkhVKT9SBRtYW47z3Lq0dmS7iN6elLBmNZqRZjT6xuTceYeE3DBaMMqq223h8KD9vgAKZcGgpiU_IyNWzyCvoa7OyYgKmObAGVyScYxbStmMgRiR1-XDPHbHu2zuMvxO6KJtdph1x7TxLuuU_lRrzIwPGcZk9yrZPvYma21MwTaHX692ax9s2uzjFbkwahfx-k8n5ONx-b54zldvTy-L-SrXnLKUA5Y150bU2GBDlQIqpsaYRuOMVahF1fJWGzBCoKEUkKuKoRI4FW0FVQl8QsphVwcfY0Aju9C_C0fJqDwxkVs5MJEnJnJg0tfuhxr2374sBhm1RaextQF1kq23_w_8AHyPcAM |
| Cites_doi | 10.1080/00401706.2000.10485979 10.18637/jss.v035.i07 10.1038/s41586-020-2649-2 10.1145/3520304.3533963 10.1186/1756-0381-1-6 10.1145/3040718.3040724 10.1007/s10710-019-09367-z 10.1016/j.neucom.2022.06.112 10.1007/s10878-022-00879-6 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.neucom.2024.128043 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| ExternalDocumentID | 10_1016_j_neucom_2024_128043 S0925231224008142 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c301t-2e4833f98ebeb0aa2095fffbce716ec96d3dcf2f99ef002e3a61ea9e59d626423 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 06:33:59 EST 2025 Sat Aug 03 15:32:48 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Benchmarking Bayesian network Evolutionary algorithm Estimation of distribution algorithm |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c301t-2e4833f98ebeb0aa2095fffbce716ec96d3dcf2f99ef002e3a61ea9e59d626423 |
| ORCID | 0000-0003-0050-0235 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neucom.2024.128043 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2024_128043 elsevier_sciencedirect_doi_10_1016_j_neucom_2024_128043 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-14 |
| PublicationDateYYYYMMDD | 2024-09-14 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Armañanzas, Inza, Santana, Saeys, Flores, Lozano, de Peer, Blanco, Robles, Bielza, Larrañaga (b3) 2008; 1 Atienza, Bielza, Larrañaga (b20) 2022; 504 McKerns, Aivazis (b23) 2010 Santana, Bielza, Larrañaga, Lozano, Echegoyen, Mendiburu, Armananzas, Shakya (b24) 2010; 35 Soloviev, Larrañaga, Bielza (b5) 2022; 44 Coletti, Scott, Bassett (b26) 2020 Luo, Qian (b14) 2009 Dasgupta, Michalewicz (b2) 2013 Mühlenbein, Bendisch, Voigt (b13) 1996 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b21) 2020; 585 Ceberio, Mendiburu, Lozano (b4) 2022 Mühlenbein, Paass (b12) 1996 McKerns, Strand, Sullivan, Fang, Aivazis (b22) 2012 M.S. Krejca, C. Witt, Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax, in: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 2017, pp. 65–79. Tonda (b25) 2020; 21 McKay, Beckman, Conover (b19) 2000 V.P. Soloviev, P. Larrañaga, C. Bielza, Quantum parametric circuit optimization with estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2022, pp. 2247–2250. Koller, Friedman (b9) 2009 Uribe, Doerr, Witt, Soloviev (b8) 2022 Larrañaga, Etxeberria, A. Lozano, M. Peña (b16) 2000 Soloviev, Bielza, Larrañaga (b17) 2023 Larrañaga, Lozano (b1) 2001 Larrañaga, Bielza (b7) 2023 Liang, Qu, Suganthan (b11) 2013 Baluja (b15) 1994 M. Pelikan, D.E. Goldberg, E. Cantú-Paz, BOA: The Bayesian optimization algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 1, 1999, pp. 525–532. Dasgupta (10.1016/j.neucom.2024.128043_b2) 2013 10.1016/j.neucom.2024.128043_b6 10.1016/j.neucom.2024.128043_b18 Harris (10.1016/j.neucom.2024.128043_b21) 2020; 585 Mühlenbein (10.1016/j.neucom.2024.128043_b12) 1996 Liang (10.1016/j.neucom.2024.128043_b11) 2013 Koller (10.1016/j.neucom.2024.128043_b9) 2009 Coletti (10.1016/j.neucom.2024.128043_b26) 2020 McKerns (10.1016/j.neucom.2024.128043_b23) 2010 Ceberio (10.1016/j.neucom.2024.128043_b4) 2022 Uribe (10.1016/j.neucom.2024.128043_b8) 2022 Atienza (10.1016/j.neucom.2024.128043_b20) 2022; 504 Tonda (10.1016/j.neucom.2024.128043_b25) 2020; 21 Larrañaga (10.1016/j.neucom.2024.128043_b7) 2023 Soloviev (10.1016/j.neucom.2024.128043_b17) 2023 Larrañaga (10.1016/j.neucom.2024.128043_b1) 2001 Soloviev (10.1016/j.neucom.2024.128043_b5) 2022; 44 McKay (10.1016/j.neucom.2024.128043_b19) 2000 Mühlenbein (10.1016/j.neucom.2024.128043_b13) 1996 McKerns (10.1016/j.neucom.2024.128043_b22) 2012 Baluja (10.1016/j.neucom.2024.128043_b15) 1994 Armañanzas (10.1016/j.neucom.2024.128043_b3) 2008; 1 Luo (10.1016/j.neucom.2024.128043_b14) 2009 Larrañaga (10.1016/j.neucom.2024.128043_b16) 2000 10.1016/j.neucom.2024.128043_b10 Santana (10.1016/j.neucom.2024.128043_b24) 2010; 35 |
| References_xml | – volume: 504 start-page: 204 year: 2022 end-page: 209 ident: b20 article-title: PyBNesian: An extensible python package for Bayesian networks publication-title: Neurocomputing – volume: 21 start-page: 269 year: 2020 end-page: 272 ident: b25 article-title: Inspyred: Bio-inspired algorithms in Python publication-title: Genet. Program. Evol. Mach. – volume: 44 start-page: 1077 year: 2022 end-page: 1098 ident: b5 article-title: Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables publication-title: J. Comb. Optim. – year: 2022 ident: b8 article-title: Estimation-of-Distribution Algorithms: Theory and Applications (Dagstuhl Seminar 22182) – year: 1994 ident: b15 article-title: Population-based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning – reference: M.S. Krejca, C. Witt, Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax, in: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 2017, pp. 65–79. – year: 2023 ident: b17 article-title: Semiparametric estimation of distribution algorithms for continuous optimization publication-title: IEEE Trans. Evol. Comput. – year: 2009 ident: b9 article-title: Probabilistic Graphical Models: Principles and Techniques – start-page: 178 year: 1996 end-page: 187 ident: b12 article-title: From recombination of genes to the estimation of distributions I. Binary parameters publication-title: International Conference on Parallel Problem Solving from Nature – start-page: 188 year: 1996 end-page: 197 ident: b13 article-title: From recombination of genes to the estimation of distributions II. Continuous parameters publication-title: International Conference on Parallel Problem Solving from Nature – start-page: 1 year: 2022 end-page: 15 ident: b4 article-title: A roadmap for solving optimization problems with estimation of distribution algorithms publication-title: Nat. Comput. – start-page: 490 year: 2013 end-page: 523 ident: b11 article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization – year: 2023 ident: b7 article-title: Estimation of distribution algorithms in machine learning: A survey publication-title: IEEE Trans. Evol. Comput. – year: 2013 ident: b2 article-title: Evolutionary Algorithms in Engineering Applications – start-page: 1571 year: 2020 end-page: 1579 ident: b26 article-title: Library for evolutionary algorithms in Python (LEAP) publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion – year: 2010 ident: b23 article-title: Pathos: A framework for heterogeneous computing – volume: 1 start-page: 1 year: 2008 end-page: 12 ident: b3 article-title: A review of estimation of distribution algorithms in bioinformatics publication-title: BioData Min. – year: 2001 ident: b1 article-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation – year: 2000 ident: b16 article-title: Optimization in continuous domains by learning and simulation of Gaussian networks publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion – reference: V.P. Soloviev, P. Larrañaga, C. Bielza, Quantum parametric circuit optimization with estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2022, pp. 2247–2250. – reference: M. Pelikan, D.E. Goldberg, E. Cantú-Paz, BOA: The Bayesian optimization algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 1, 1999, pp. 525–532. – start-page: 55 year: 2000 end-page: 61 ident: b19 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 35 start-page: 1 year: 2010 end-page: 30 ident: b24 article-title: Mateda-2.0: A MATLAB package for the implementation and analysis of estimation of distribution algorithms publication-title: J. Stat. Softw. – year: 2012 ident: b22 article-title: Building a framework for predictive science – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b21 article-title: Array programming with NumPy publication-title: Nature – start-page: 1526 year: 2009 end-page: 1531 ident: b14 article-title: Evolutionary algorithm using kernel density estimation model in continuous domain publication-title: 2009 7th Asian Control Conference – ident: 10.1016/j.neucom.2024.128043_b18 – start-page: 55 year: 2000 ident: 10.1016/j.neucom.2024.128043_b19 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics doi: 10.1080/00401706.2000.10485979 – start-page: 490 year: 2013 ident: 10.1016/j.neucom.2024.128043_b11 – year: 2023 ident: 10.1016/j.neucom.2024.128043_b17 article-title: Semiparametric estimation of distribution algorithms for continuous optimization publication-title: IEEE Trans. Evol. Comput. – volume: 35 start-page: 1 year: 2010 ident: 10.1016/j.neucom.2024.128043_b24 article-title: Mateda-2.0: A MATLAB package for the implementation and analysis of estimation of distribution algorithms publication-title: J. Stat. Softw. doi: 10.18637/jss.v035.i07 – year: 2022 ident: 10.1016/j.neucom.2024.128043_b8 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 10.1016/j.neucom.2024.128043_b21 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2024.128043_b4 article-title: A roadmap for solving optimization problems with estimation of distribution algorithms publication-title: Nat. Comput. – year: 2000 ident: 10.1016/j.neucom.2024.128043_b16 article-title: Optimization in continuous domains by learning and simulation of Gaussian networks – start-page: 1571 year: 2020 ident: 10.1016/j.neucom.2024.128043_b26 article-title: Library for evolutionary algorithms in Python (LEAP) – start-page: 178 year: 1996 ident: 10.1016/j.neucom.2024.128043_b12 article-title: From recombination of genes to the estimation of distributions I. Binary parameters – ident: 10.1016/j.neucom.2024.128043_b6 doi: 10.1145/3520304.3533963 – start-page: 1526 year: 2009 ident: 10.1016/j.neucom.2024.128043_b14 article-title: Evolutionary algorithm using kernel density estimation model in continuous domain – year: 1994 ident: 10.1016/j.neucom.2024.128043_b15 – volume: 1 start-page: 1 year: 2008 ident: 10.1016/j.neucom.2024.128043_b3 article-title: A review of estimation of distribution algorithms in bioinformatics publication-title: BioData Min. doi: 10.1186/1756-0381-1-6 – year: 2010 ident: 10.1016/j.neucom.2024.128043_b23 – ident: 10.1016/j.neucom.2024.128043_b10 doi: 10.1145/3040718.3040724 – volume: 21 start-page: 269 issue: 1–2 year: 2020 ident: 10.1016/j.neucom.2024.128043_b25 article-title: Inspyred: Bio-inspired algorithms in Python publication-title: Genet. Program. Evol. Mach. doi: 10.1007/s10710-019-09367-z – year: 2012 ident: 10.1016/j.neucom.2024.128043_b22 – volume: 504 start-page: 204 year: 2022 ident: 10.1016/j.neucom.2024.128043_b20 article-title: PyBNesian: An extensible python package for Bayesian networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.112 – volume: 44 start-page: 1077 issue: 2 year: 2022 ident: 10.1016/j.neucom.2024.128043_b5 article-title: Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables publication-title: J. Comb. Optim. doi: 10.1007/s10878-022-00879-6 – start-page: 188 year: 1996 ident: 10.1016/j.neucom.2024.128043_b13 article-title: From recombination of genes to the estimation of distributions II. Continuous parameters – year: 2009 ident: 10.1016/j.neucom.2024.128043_b9 – year: 2001 ident: 10.1016/j.neucom.2024.128043_b1 – year: 2013 ident: 10.1016/j.neucom.2024.128043_b2 – year: 2023 ident: 10.1016/j.neucom.2024.128043_b7 article-title: Estimation of distribution algorithms in machine learning: A survey publication-title: IEEE Trans. Evol. Comput. |
| SSID | ssj0017129 |
| Score | 2.4225054 |
| Snippet | Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is learned and sampled in each iteration. EDAspy... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128043 |
| SubjectTerms | Bayesian network Benchmarking Estimation of distribution algorithm Evolutionary algorithm |
| Title | EDAspy: An extensible python package for estimation of distribution algorithms |
| URI | https://dx.doi.org/10.1016/j.neucom.2024.128043 |
| Volume | 598 |
| WOSCitedRecordID | wos001362095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdQxwMvwPgQ42PyA29VqsRJG5u3MIoGQlWlDdS3yInPrF2XVGk7bfz1nGMnqVaEAImXqLKUuLr75e58-d0dIW99DrlSQnroPnwvUjrwxFBnHkgWcQhFqOuqtG9f4smEz2Zi6riq63qcQFwU_OZGrP6rqnENlW1KZ_9C3e1DcQF_o9LximrH6x8pfvwhWa9uXcKvznEj6pfQX92aNgF9PCNfGp5O3eob3--rNmZUpoeuG3_Vl8vvZTXfXLhm5oumydMWHV49CMKlGJIr02lBGVi1KYUzNKjobq9rDu3c0D-hPx201B9ZVdJ8n38fSJvVnYKqyi5bD8sf9fJJWeQXcjctwSLDoQi6tOR-vYxNOrKhhxGltb9gTS6PWV3MvmuTh3Y09Z59t6mGxaCArSH7mI0H6GF92-rpTufsM7Od2c3wZHkQoac-YDE-ukcOkk_j2ef2c1McMNuU0f29psayJgLu7_XrGGYnLjl_TB66AwVNLBAOyT0onpBHzbAO6mz3UzKxuHhHk4J2qKAWFdShgiIqaIcKWmq6iwraoeIZ-fpxfH5y6rlhGl6ONnzjMYh4GGrB8a3NfCkZxtZa6ywHPDFDLkYqVLlmWgjQ6CUhlKMApIChUHjmxaD7OekVZQEvCPUBBMbdYaRGPIIwkLESkZ-PgkxkvhbyiHiNeNKV7ZmSNmTCRWrFmRpxplacRyRuZJi6uM_Gcymq_bd3vvznO1-RBx1qX5PeptrCG3I_v97M19Wxw8dPxA9_Uw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EDAspy%3A+An+extensible+python+package+for+estimation+of+distribution+algorithms&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soloviev%2C+Vicente+P.&rft.au=Larra%C3%B1aga%2C+Pedro&rft.au=Bielza%2C+Concha&rft.date=2024-09-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=598&rft_id=info:doi/10.1016%2Fj.neucom.2024.128043&rft.externalDocID=S0925231224008142 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |