Optimal portfolio trading subject to stochastic dominance constraints under second‐order autoregressive price dynamics

This paper studies the optimal portfolio trading problem under the generalized second‐order autoregressive execution price model. The problem of minimizing expected execution cost under the proposed price model is formulated as a quadratic programming (QP) problem. For a risk‐averse trader, problem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International transactions in operational research Ročník 27; číslo 3; s. 1771 - 1803
Hlavní autori: Singh, Arti, Dharmaraja, Selvamuthu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.05.2020
Predmet:
ISSN:0969-6016, 1475-3995
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies the optimal portfolio trading problem under the generalized second‐order autoregressive execution price model. The problem of minimizing expected execution cost under the proposed price model is formulated as a quadratic programming (QP) problem. For a risk‐averse trader, problem formulation under the second‐order stochastic dominance constraints results in a quadratically constrained QP problem. Under some conditions on the execution price model, it is proved that the portfolio trading problems for risk‐neutral and risk‐averse traders become convex programming problems, which have many theoretical and computational advantages over the general class of optimization problems. Extensive numerical illustrations are provided, which render the practical significance of the proposed execution price model and the portfolio trading problems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0969-6016
1475-3995
DOI:10.1111/itor.12435