Solution of intuitionistic fuzzy linear programming problem by dual simplex algorithm and sensitivity analysis
Sensitivity analysis is designed to study the effect on the optimal solution of changes in model parameters. This analysis is known to be an integral part of any real‐life problem solving. This gives a system a dynamic function that enables a researcher to analyze the behavior of the optimal solutio...
Saved in:
| Published in: | Computational intelligence Vol. 37; no. 2; pp. 892 - 912 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2021
Blackwell Publishing Ltd |
| Subjects: | |
| ISSN: | 0824-7935, 1467-8640 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Sensitivity analysis is designed to study the effect on the optimal solution of changes in model parameters. This analysis is known to be an integral part of any real‐life problem solving. This gives a system a dynamic function that enables a researcher to analyze the behavior of the optimal solution as a result of changing the parameters of the model. In this article, postoptimality analysis for changes in objective functions and constraints is presented with suitable numerical illustrations by dual simplex method using magnitude based ranking of triangular intuitionistic fuzzy numbers. The sensitivity range is determined within which the parameters that exist in intuitionistic fuzzy linear programming problem can vary without affecting the optimality of the solution. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0824-7935 1467-8640 |
| DOI: | 10.1111/coin.12435 |