A stochastic programming approach to enhance the resilience of infrastructure under weather‐related risk
ABSTRACT The presented methodology results in an optimal portfolio of resilience‐oriented resource allocation under weather‐related risks. The pre‐event mitigations improve the capacity of the transportation system to absorb shocks from future natural hazards, contributing to risk reduction. The pos...
Uložené v:
| Vydané v: | Computer-aided civil and infrastructure engineering Ročník 38; číslo 4; s. 411 - 432 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.03.2023
|
| Predmet: | |
| ISSN: | 1093-9687, 1467-8667 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | ABSTRACT
The presented methodology results in an optimal portfolio of resilience‐oriented resource allocation under weather‐related risks. The pre‐event mitigations improve the capacity of the transportation system to absorb shocks from future natural hazards, contributing to risk reduction. The post‐event recovery planning results in enhancing the system's ability to bounce back rapidly, promoting network resilience. Considering the complex nature of the problem due to uncertainty of hazards, and the impact of the pre‐event decisions on post‐event planning, this study formulates a nonlinear two‐stage stochastic programming (NTSSP) model, with the objective of minimizing the direct construction investment and indirect costs in both pre‐event mitigation and post‐event recovery stages. In the model, the first stage prioritizes a bridge group that will be retrofitted or repaired to improve the system's robustness and redundancy. The second stage elaborates the uncertain occurrence of a type of natural hazard with any potential intensity at any possible network location. The damaged state of the network is dependent on decisions made on first‐stage mitigation efforts. While there has been research addressing the optimization of pre‐event or post‐event efforts, the number of studies addressing two stages in the same framework is limited. Even such studies are limited in their application due to the consideration of small networks with a limited number of assets. The NTSSP model addresses this gap and builds a large‐scale data‐driven simulation environment. To effectively solve the NTSSP model, a hybrid heuristic method of evolution strategy with high‐performance parallel computing is applied, through which the evolutionary process is accelerated, and the computing time is reduced as a result. The NTSSP model is implemented in a test‐bed transportation network in Iowa under flood hazards. The results show that the NTSSP model balances the economy and efficiency on risk mitigation within the budgetary investment while constantly providing a resilient system during the full two‐stage course. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1093-9687 1467-8667 |
| DOI: | 10.1111/mice.12843 |