Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets

Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of approximate reasoning Ročník 169; s. 109181
Hlavní autoři: Yu, Ying, Wan, Ming, Qian, Jin, Miao, Duoqian, Zhang, Zhiqiang, Zhao, Pengfei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2024
Témata:
ISSN:0888-613X, 1873-4731
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Primarily, while they excel at harnessing label-feature relationships, they often struggle to leverage inter-feature information effectively. Secondly, numerous MLFS approaches overlook the uncertainty in the boundary domain, despite its critical role in identifying high-quality features. To address these issues, this paper introduces a novel MLFS algorithm, named VMFS. It innovatively integrates multi-granulation rough sets with three-way decision, leveraging multi-granularity decision-theoretic rough sets (MGDRS) with variable degrees for optimal performance. Initially, we construct coarse decision (RDC), fine decision (RDF), and uncertainty decision (RDU) functions for each object based on MGDRS with variable degrees. These decision functions then quantify the dependence of attribute subsets, considering both deterministic and uncertain aspects. Finally, we employ the dependency to assess attribute importance and rank them accordingly. Our proposed method has undergone rigorous evaluation on various standard multi-label datasets, demonstrating its superiority. Experimental results consistently show that VMFS significantly outperforms other algorithms on most datasets, underscoring its effectiveness and reliability in multi-label learning tasks.
AbstractList Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Primarily, while they excel at harnessing label-feature relationships, they often struggle to leverage inter-feature information effectively. Secondly, numerous MLFS approaches overlook the uncertainty in the boundary domain, despite its critical role in identifying high-quality features. To address these issues, this paper introduces a novel MLFS algorithm, named VMFS. It innovatively integrates multi-granulation rough sets with three-way decision, leveraging multi-granularity decision-theoretic rough sets (MGDRS) with variable degrees for optimal performance. Initially, we construct coarse decision (RDC), fine decision (RDF), and uncertainty decision (RDU) functions for each object based on MGDRS with variable degrees. These decision functions then quantify the dependence of attribute subsets, considering both deterministic and uncertain aspects. Finally, we employ the dependency to assess attribute importance and rank them accordingly. Our proposed method has undergone rigorous evaluation on various standard multi-label datasets, demonstrating its superiority. Experimental results consistently show that VMFS significantly outperforms other algorithms on most datasets, underscoring its effectiveness and reliability in multi-label learning tasks.
ArticleNumber 109181
Author Wan, Ming
Qian, Jin
Zhao, Pengfei
Yu, Ying
Miao, Duoqian
Zhang, Zhiqiang
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-3480-4571
  surname: Yu
  fullname: Yu, Ying
  email: yuyingjx@163.com
  organization: State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang, 330013, Jiangxi, China
– sequence: 2
  givenname: Ming
  surname: Wan
  fullname: Wan, Ming
  organization: College of Software, East China Jiaotong University, Nanchang, 330013, Jiangxi, China
– sequence: 3
  givenname: Jin
  surname: Qian
  fullname: Qian, Jin
  organization: College of Software, East China Jiaotong University, Nanchang, 330013, Jiangxi, China
– sequence: 4
  givenname: Duoqian
  surname: Miao
  fullname: Miao, Duoqian
  organization: School of Electronic and Information Engineering, Tongji University, Shanghai, 210048, China
– sequence: 5
  givenname: Zhiqiang
  surname: Zhang
  fullname: Zhang, Zhiqiang
  organization: College of Software, East China Jiaotong University, Nanchang, 330013, Jiangxi, China
– sequence: 6
  givenname: Pengfei
  surname: Zhao
  fullname: Zhao, Pengfei
  organization: Digital Economy Research Institute of Jiangxi Provincial Investment Group, Nanchang, 330013, Jiangxi, China
BookMark eNp9kM9KxDAQh4Os4O7qC3jqC2RNmrZpwYssrgoLXhS8hSSddFOyrSTpgm9v9s_Jg6cZht83w3wLNBvGARC6p2RFCa0e-pXtpV_lJC_SoKE1vUJzWnOGC87oDM1JXde4ouzrBi1C6AkhFS_qOQobkHHykAVwoKMdh8yMPttPLlrspAKXOZB-sEOXKRmgzVLiIL2VygFuofMAl3Tn5TA5edrRgrYhNTjuYPQQrc78OHW7dCaGW3RtpAtwd6lL9Ll5_li_4u37y9v6aYs1IyRiA4YXValYyXPdcKqa1IBiDFgFheRaE0oYV0RLVTWMVGCK0nAmS8q1NJQtUX7eq_0Yggcjvr3dS_8jKBFHbaIXR23iqE2ctSWo_gNpG09PRS-t-x99PKOQnjpY8CJoC4OG1vrkVrSj_Q__BYWxjaI
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_176418
crossref_primary_10_1109_ACCESS_2024_3439858
crossref_primary_10_1038_s41598_025_92387_w
crossref_primary_10_1002_pat_6550
crossref_primary_10_1016_j_ijar_2024_109310
crossref_primary_10_1088_1402_4896_ad9d92
crossref_primary_10_1016_j_aej_2025_01_071
crossref_primary_10_1109_JSEN_2025_3528956
crossref_primary_10_1002_pat_6595
crossref_primary_10_1111_nyas_15257
crossref_primary_10_1088_1361_6501_ad7f7b
crossref_primary_10_1088_2515_7620_ad6d3e
crossref_primary_10_3390_math12223495
crossref_primary_10_1109_TASE_2025_3584202
crossref_primary_10_1002_pat_6621
crossref_primary_10_1016_j_heliyon_2024_e39815
crossref_primary_10_1109_JSEN_2024_3523496
crossref_primary_10_1515_zna_2024_0257
crossref_primary_10_1016_j_knosys_2025_113210
crossref_primary_10_3390_axioms13070471
crossref_primary_10_1109_JSEN_2024_3457681
crossref_primary_10_1016_j_csite_2024_105074
crossref_primary_10_2174_0115748936299646240625092734
crossref_primary_10_1002_ima_70122
crossref_primary_10_1016_j_ijar_2025_109469
crossref_primary_10_1016_j_jwpe_2024_105854
crossref_primary_10_1007_s13042_025_02779_7
crossref_primary_10_1016_j_still_2025_106796
crossref_primary_10_1109_ACCESS_2024_3467678
crossref_primary_10_1002_ima_70009
crossref_primary_10_1109_JBHI_2024_3522306
crossref_primary_10_1109_TETCI_2025_3543272
crossref_primary_10_1109_JPHOT_2025_3541426
crossref_primary_10_1038_s41598_024_82565_7
crossref_primary_10_1016_j_inoche_2024_113037
crossref_primary_10_1016_j_engappai_2025_110878
crossref_primary_10_1109_JSEN_2024_3432277
crossref_primary_10_1109_TITS_2025_3547325
crossref_primary_10_1080_19392699_2024_2434891
crossref_primary_10_1038_s41598_025_05064_3
crossref_primary_10_1088_1402_4896_ad999d
crossref_primary_10_1109_TSM_2025_3558015
crossref_primary_10_1049_ipr2_70118
crossref_primary_10_1016_j_array_2025_100402
crossref_primary_10_1002_pat_6571
crossref_primary_10_1109_JSEN_2024_3494772
crossref_primary_10_1155_2024_8814585
crossref_primary_10_1080_01431161_2024_2416592
crossref_primary_10_1109_TFUZZ_2025_3540884
crossref_primary_10_1016_j_padiff_2025_101176
crossref_primary_10_1109_JSEN_2024_3511554
crossref_primary_10_1007_s12355_024_01488_9
crossref_primary_10_1109_TII_2025_3547007
crossref_primary_10_1016_j_asoc_2025_112757
crossref_primary_10_1038_s41598_024_65153_7
crossref_primary_10_1038_s41598_024_80259_8
crossref_primary_10_1080_0954898X_2024_2447281
crossref_primary_10_1177_13694332241298017
crossref_primary_10_1109_LSP_2025_3528861
crossref_primary_10_1049_ipr2_13256
crossref_primary_10_2989_16073606_2025_2463674
crossref_primary_10_3390_sym17081217
crossref_primary_10_1109_TCDS_2024_3525180
crossref_primary_10_1007_s13538_024_01601_z
crossref_primary_10_1080_00071668_2025_2500346
crossref_primary_10_1016_j_jddst_2024_106281
crossref_primary_10_1016_j_still_2024_106238
crossref_primary_10_1080_25740881_2024_2408346
crossref_primary_10_1109_JSTARS_2025_3535805
crossref_primary_10_1016_j_watres_2024_122715
crossref_primary_10_1007_s12665_024_11789_7
crossref_primary_10_1016_j_ijar_2024_109350
crossref_primary_10_1016_j_ins_2025_122632
crossref_primary_10_1080_10255842_2024_2410228
crossref_primary_10_1177_03611981251334618
crossref_primary_10_1016_j_orgel_2024_107145
Cites_doi 10.1016/j.knosys.2023.110743
10.1016/j.asoc.2021.107302
10.1016/j.ins.2009.06.010
10.1214/aoms/1177731944
10.1016/j.ins.2022.12.070
10.1007/s10489-020-01785-2
10.1016/j.knosys.2019.105066
10.1016/j.inffus.2023.101948
10.1016/j.patcog.2019.06.003
10.1109/TCYB.2018.2834390
10.1016/j.ijar.2021.06.005
10.1145/1839490.1839495
10.1016/j.ijar.2020.10.002
10.1016/j.neucom.2015.06.010
10.1080/01621459.1961.10482090
10.1007/s40747-021-00636-y
10.1016/j.patrec.2012.10.005
10.1016/j.neucom.2021.02.005
10.1016/j.patcog.2023.109899
10.1109/TKDE.2013.39
10.1016/j.inffus.2023.02.016
10.1016/j.asoc.2015.10.009
10.1109/TFUZZ.2020.2989098
10.1016/j.neucom.2022.11.096
10.1016/j.ijar.2018.09.005
10.1007/s41066-018-0110-9
10.1016/j.ijar.2013.03.004
10.1016/j.ins.2020.12.036
10.1111/j.2517-6161.1995.tb02031.x
10.3390/math10111847
10.1109/TPAMI.2021.3119334
10.1016/j.ins.2020.09.019
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijar.2024.109181
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-4731
ExternalDocumentID 10_1016_j_ijar_2024_109181
S0888613X24000689
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-fef7465b3572c971b9572eb33e36e4a7cc01037b0cab69306ef45f73a517caf13
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223598800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-613X
IngestDate Tue Nov 18 22:00:56 EST 2025
Sat Nov 29 04:42:33 EST 2025
Sat Apr 20 15:58:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-label learning
Feature selection
Uncertainty
Three-way decision
Rough sets
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-fef7465b3572c971b9572eb33e36e4a7cc01037b0cab69306ef45f73a517caf13
ORCID 0000-0002-3480-4571
ParticipantIDs crossref_primary_10_1016_j_ijar_2024_109181
crossref_citationtrail_10_1016_j_ijar_2024_109181
elsevier_sciencedirect_doi_10_1016_j_ijar_2024_109181
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle International journal of approximate reasoning
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Luo, Li, Zhou, Li (br0130) 2019; 95
Sun, Ji, Ye (br0060) 2013
Dunn (br0390) 1961; 56
Zhang, Peña, Robles (br0140) 2009; 179
Liu, Wang, Shen, Tsang (br0010) 2021; 44
Friedman (br0370) 1940; 11
Li, Li, Zhai, Wang, Zhang (br0250) 2014
Fan, Liu, Weng, Chen, Chen, Wu (br0080) 2021; 442
Fan, Liu, Tang, Liu, Lin, Du (br0160) 2024; 145
Sun, Wang, Ding, Qian, Xu (br0120) 2020; 29
Zhang, Zhou (br0050) 2010; 4
Zhang, Miao, Pedrycz, Zhao, Xu, Yu (br0320) 2020; 189
Lin, Hu, Liu, Duan (br0150) 2015; 168
Dong, Sun, Li, Ding, Sun (br0110) 2020; 50
Duan, Hu, Zhang, Qian, Li (br0230) 2015; 52
Xu, Shen, Sun (br0270) 2022; 8
Campagner (br0310) 2023; 372
Demšar (br0400) 2006; 7
Qian, Zhang, Sang, Liang (br0280) 2014; 55
Lin, Hu, Liu, Chen, Duan (br0240) 2016; 38
Qian, Tu, Qian, Shu (br0040) 2023; 276
Zhao, Zhang, Miao (br0330) 2022; 10
Pawlak (br0170) 1984
Ding, Lin, Cao (br0090) 2018; 49
Zhang, Gao, Hu, Li (br0070) 2021; 553
Yao (br0290) 2018; 103
Lyu, Feng, Li (br0020) 2021; 543
Li, Xue, Zhang (br0100) 2021; 106
Liu, Lin, Ding, Zhang, Wang, Du (br0210) 2023; 524
Kou, Lin, Qian, Liao (br0200) 2023; 624
Liang, Mi, Feng (br0260) 2019; 4
Hüllermeier, Destercke, Couso (br0300) 2019
Qian, Huang, Xu, Shu, Ding (br0030) 2023; 100
Zhang, Zhou (br0340) 2014; 26
Qian, Huang, Wang, Xie (br0220) 2021; 128
Lee, Kim (br0350) 2013; 34
Sun, Si, Ding, Wang, Tfsfb (br0190) 2023; 95
Spolaôr, Alvares Cherman, Monard, Lee (br0360) 2013
Benjamini, Hochberg (br0380) 1995; 57
Campagner, Ciucci, Hüllermeier (br0180) 2021; 136
Zhang (10.1016/j.ijar.2024.109181_br0320) 2020; 189
Zhang (10.1016/j.ijar.2024.109181_br0340) 2014; 26
Lyu (10.1016/j.ijar.2024.109181_br0020) 2021; 543
Yao (10.1016/j.ijar.2024.109181_br0290) 2018; 103
Zhang (10.1016/j.ijar.2024.109181_br0070) 2021; 553
Dong (10.1016/j.ijar.2024.109181_br0110) 2020; 50
Spolaôr (10.1016/j.ijar.2024.109181_br0360) 2013
Benjamini (10.1016/j.ijar.2024.109181_br0380) 1995; 57
Fan (10.1016/j.ijar.2024.109181_br0080) 2021; 442
Demšar (10.1016/j.ijar.2024.109181_br0400) 2006; 7
Dunn (10.1016/j.ijar.2024.109181_br0390) 1961; 56
Qian (10.1016/j.ijar.2024.109181_br0220) 2021; 128
Hüllermeier (10.1016/j.ijar.2024.109181_br0300) 2019
Liang (10.1016/j.ijar.2024.109181_br0260) 2019; 4
Li (10.1016/j.ijar.2024.109181_br0250) 2014
Duan (10.1016/j.ijar.2024.109181_br0230) 2015; 52
Lin (10.1016/j.ijar.2024.109181_br0240) 2016; 38
Zhang (10.1016/j.ijar.2024.109181_br0140) 2009; 179
Lee (10.1016/j.ijar.2024.109181_br0350) 2013; 34
Liu (10.1016/j.ijar.2024.109181_br0010) 2021; 44
Qian (10.1016/j.ijar.2024.109181_br0030) 2023; 100
Sun (10.1016/j.ijar.2024.109181_br0190) 2023; 95
Zhao (10.1016/j.ijar.2024.109181_br0330) 2022; 10
Kou (10.1016/j.ijar.2024.109181_br0200) 2023; 624
Pawlak (10.1016/j.ijar.2024.109181_br0170) 1984
Xu (10.1016/j.ijar.2024.109181_br0270) 2022; 8
Friedman (10.1016/j.ijar.2024.109181_br0370) 1940; 11
Zhang (10.1016/j.ijar.2024.109181_br0050) 2010; 4
Sun (10.1016/j.ijar.2024.109181_br0120) 2020; 29
Lin (10.1016/j.ijar.2024.109181_br0150) 2015; 168
Ding (10.1016/j.ijar.2024.109181_br0090) 2018; 49
Zhang (10.1016/j.ijar.2024.109181_br0130) 2019; 95
Fan (10.1016/j.ijar.2024.109181_br0160) 2024; 145
Liu (10.1016/j.ijar.2024.109181_br0210) 2023; 524
Sun (10.1016/j.ijar.2024.109181_br0060) 2013
Qian (10.1016/j.ijar.2024.109181_br0280) 2014; 55
Qian (10.1016/j.ijar.2024.109181_br0040) 2023; 276
Campagner (10.1016/j.ijar.2024.109181_br0310) 2023; 372
Li (10.1016/j.ijar.2024.109181_br0100) 2021; 106
Campagner (10.1016/j.ijar.2024.109181_br0180) 2021; 136
References_xml – volume: 442
  start-page: 98
  year: 2021
  end-page: 115
  ident: br0080
  article-title: Multi-label feature selection with local discriminant model and label correlations
  publication-title: Neurocomputing
– volume: 95
  start-page: 91
  year: 2023
  end-page: 108
  ident: br0190
  article-title: Two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary whale optimization for imbalanced data
  publication-title: Inf. Fusion
– volume: 128
  start-page: 32
  year: 2021
  end-page: 55
  ident: br0220
  article-title: Label distribution feature selection for multi-label classification with rough set
  publication-title: Int. J. Approx. Reason.
– volume: 136
  start-page: 150
  year: 2021
  end-page: 167
  ident: br0180
  article-title: Rough set-based feature selection for weakly labeled data
  publication-title: Int. J. Approx. Reason.
– volume: 10
  start-page: 1847
  year: 2022
  ident: br0330
  article-title: Intuitionistic fuzzy-based three-way label enhancement for multi-label classification
  publication-title: Mathematics
– volume: 34
  start-page: 349
  year: 2013
  end-page: 357
  ident: br0350
  article-title: Feature selection for multi-label classification using multivariate mutual information
  publication-title: Pattern Recognit. Lett.
– volume: 8
  start-page: 2105
  year: 2022
  end-page: 2129
  ident: br0270
  article-title: Multi-label feature selection based on fuzzy neighborhood rough sets
  publication-title: Complex Intell. Syst.
– volume: 50
  start-page: 3748
  year: 2020
  end-page: 3774
  ident: br0110
  article-title: A multi-objective algorithm for multi-label filter feature selection problem
  publication-title: Appl. Intell.
– volume: 624
  start-page: 299
  year: 2023
  end-page: 323
  ident: br0200
  article-title: A novel multi-label feature selection method with association rules and rough set
  publication-title: Inf. Sci.
– volume: 55
  start-page: 225
  year: 2014
  end-page: 237
  ident: br0280
  article-title: Multigranulation decision-theoretic rough sets
  publication-title: Int. J. Approx. Reason.
– volume: 95
  start-page: 136
  year: 2019
  end-page: 150
  ident: br0130
  article-title: Manifold regularized discriminative feature selection for multi-label learning
  publication-title: Pattern Recognit.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: br0400
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 56
  start-page: 52
  year: 1961
  end-page: 64
  ident: br0390
  article-title: Multiple comparisons among means
  publication-title: J. Am. Stat. Assoc.
– volume: 29
  start-page: 19
  year: 2020
  end-page: 33
  ident: br0120
  article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 4
  start-page: 323
  year: 2019
  end-page: 335
  ident: br0260
  article-title: Optimal granulation selection for multi-label data based on multi-granulation rough sets
  publication-title: Granul. Comput.
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: br0370
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– volume: 106
  year: 2021
  ident: br0100
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Appl. Soft Comput.
– volume: 103
  start-page: 107
  year: 2018
  end-page: 123
  ident: br0290
  article-title: Three-way decision and granular computing
  publication-title: Int. J. Approx. Reason.
– volume: 44
  start-page: 7955
  year: 2021
  end-page: 7974
  ident: br0010
  article-title: The emerging trends of multi-label learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 553
  start-page: 129
  year: 2021
  end-page: 153
  ident: br0070
  article-title: Multi-label feature selection based on the division of label topics
  publication-title: Inf. Sci.
– volume: 524
  start-page: 142
  year: 2023
  end-page: 157
  ident: br0210
  article-title: Multi-label feature selection based on label distribution and neighborhood rough set
  publication-title: Neurocomputing
– volume: 276
  year: 2023
  ident: br0040
  article-title: Partial multi-label learning via three-way decision-based tri-training
  publication-title: Knowl.-Based Syst.
– year: 2013
  ident: br0060
  article-title: Multi-Label Dimensionality Reduction
– volume: 145
  year: 2024
  ident: br0160
  article-title: Learning correlation information for multi-label feature selection
  publication-title: Pattern Recognit.
– volume: 168
  start-page: 92
  year: 2015
  end-page: 103
  ident: br0150
  article-title: Multi-label feature selection based on max-dependency and min-redundancy
  publication-title: Neurocomputing
– start-page: 6
  year: 2013
  end-page: 11
  ident: br0360
  article-title: Relieff for multi-label feature selection
  publication-title: 2013 Brazilian Conference on Intelligent Systems
– volume: 49
  start-page: 2744
  year: 2018
  end-page: 2757
  ident: br0090
  article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping pso with nearest-neighbor memeplexes
  publication-title: IEEE Trans. Cybern.
– start-page: 187
  year: 1984
  end-page: 196
  ident: br0170
  article-title: Rough sets and decision tables
  publication-title: Symposium on Computation Theory
– volume: 4
  start-page: 1
  year: 2010
  end-page: 21
  ident: br0050
  article-title: Multilabel dimensionality reduction via dependence maximization
  publication-title: ACM Trans. Knowl. Discov. Data
– start-page: 2014
  year: 2014
  ident: br0250
  article-title: A variable precision attribute reduction approach in multilabel decision tables
  publication-title: Sci. World J.
– volume: 26
  start-page: 1819
  year: 2014
  end-page: 1837
  ident: br0340
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 38
  start-page: 244
  year: 2016
  end-page: 256
  ident: br0240
  article-title: Multi-label feature selection based on neighborhood mutual information
  publication-title: Appl. Soft Comput.
– volume: 189
  year: 2020
  ident: br0320
  article-title: Granular structure-based incremental updating for multi-label classification
  publication-title: Knowl.-Based Syst.
– start-page: 266
  year: 2019
  end-page: 279
  ident: br0300
  article-title: Learning from imprecise data: adjustments of optimistic and pessimistic variants
  publication-title: Scalable Uncertainty Management: 13th International Conference
– volume: 372
  start-page: 327
  year: 2023
  end-page: 334
  ident: br0310
  article-title: Credal learning: weakly supervised learning from credal sets
  publication-title: Front. Artif. Intell. Appl.
– volume: 100
  year: 2023
  ident: br0030
  article-title: A survey on multi-label feature selection from perspectives of label fusion
  publication-title: Inf. Fusion
– volume: 179
  start-page: 3218
  year: 2009
  end-page: 3229
  ident: br0140
  article-title: Feature selection for multi-label naive Bayes classification
  publication-title: Inf. Sci.
– volume: 543
  start-page: 454
  year: 2021
  end-page: 466
  ident: br0020
  article-title: Noisy label tolerance: a new perspective of partial multi-label learning
  publication-title: Inf. Sci.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: br0380
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
– volume: 52
  start-page: 56
  year: 2015
  end-page: 65
  ident: br0230
  article-title: Feature selection for multi-label classification based on neighborhood rough sets
  publication-title: J. Comput. Res. Dev.
– volume: 276
  year: 2023
  ident: 10.1016/j.ijar.2024.109181_br0040
  article-title: Partial multi-label learning via three-way decision-based tri-training
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110743
– volume: 106
  year: 2021
  ident: 10.1016/j.ijar.2024.109181_br0100
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107302
– volume: 179
  start-page: 3218
  issue: 19
  year: 2009
  ident: 10.1016/j.ijar.2024.109181_br0140
  article-title: Feature selection for multi-label naive Bayes classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.06.010
– volume: 52
  start-page: 56
  issue: 1
  year: 2015
  ident: 10.1016/j.ijar.2024.109181_br0230
  article-title: Feature selection for multi-label classification based on neighborhood rough sets
  publication-title: J. Comput. Res. Dev.
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ijar.2024.109181_br0400
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 372
  start-page: 327
  year: 2023
  ident: 10.1016/j.ijar.2024.109181_br0310
  article-title: Credal learning: weakly supervised learning from credal sets
  publication-title: Front. Artif. Intell. Appl.
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.ijar.2024.109181_br0370
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 624
  start-page: 299
  year: 2023
  ident: 10.1016/j.ijar.2024.109181_br0200
  article-title: A novel multi-label feature selection method with association rules and rough set
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.070
– start-page: 2014
  year: 2014
  ident: 10.1016/j.ijar.2024.109181_br0250
  article-title: A variable precision attribute reduction approach in multilabel decision tables
  publication-title: Sci. World J.
– volume: 50
  start-page: 3748
  year: 2020
  ident: 10.1016/j.ijar.2024.109181_br0110
  article-title: A multi-objective algorithm for multi-label filter feature selection problem
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01785-2
– volume: 189
  year: 2020
  ident: 10.1016/j.ijar.2024.109181_br0320
  article-title: Granular structure-based incremental updating for multi-label classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105066
– volume: 100
  year: 2023
  ident: 10.1016/j.ijar.2024.109181_br0030
  article-title: A survey on multi-label feature selection from perspectives of label fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101948
– volume: 95
  start-page: 136
  year: 2019
  ident: 10.1016/j.ijar.2024.109181_br0130
  article-title: Manifold regularized discriminative feature selection for multi-label learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.06.003
– volume: 49
  start-page: 2744
  issue: 7
  year: 2018
  ident: 10.1016/j.ijar.2024.109181_br0090
  article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping pso with nearest-neighbor memeplexes
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2834390
– volume: 136
  start-page: 150
  year: 2021
  ident: 10.1016/j.ijar.2024.109181_br0180
  article-title: Rough set-based feature selection for weakly labeled data
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2021.06.005
– volume: 4
  start-page: 1
  issue: 3
  year: 2010
  ident: 10.1016/j.ijar.2024.109181_br0050
  article-title: Multilabel dimensionality reduction via dependence maximization
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/1839490.1839495
– volume: 128
  start-page: 32
  year: 2021
  ident: 10.1016/j.ijar.2024.109181_br0220
  article-title: Label distribution feature selection for multi-label classification with rough set
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2020.10.002
– year: 2013
  ident: 10.1016/j.ijar.2024.109181_br0060
– volume: 168
  start-page: 92
  year: 2015
  ident: 10.1016/j.ijar.2024.109181_br0150
  article-title: Multi-label feature selection based on max-dependency and min-redundancy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.010
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  ident: 10.1016/j.ijar.2024.109181_br0390
  article-title: Multiple comparisons among means
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1961.10482090
– volume: 8
  start-page: 2105
  issue: 3
  year: 2022
  ident: 10.1016/j.ijar.2024.109181_br0270
  article-title: Multi-label feature selection based on fuzzy neighborhood rough sets
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00636-y
– start-page: 266
  year: 2019
  ident: 10.1016/j.ijar.2024.109181_br0300
  article-title: Learning from imprecise data: adjustments of optimistic and pessimistic variants
– volume: 34
  start-page: 349
  issue: 3
  year: 2013
  ident: 10.1016/j.ijar.2024.109181_br0350
  article-title: Feature selection for multi-label classification using multivariate mutual information
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.10.005
– volume: 442
  start-page: 98
  year: 2021
  ident: 10.1016/j.ijar.2024.109181_br0080
  article-title: Multi-label feature selection with local discriminant model and label correlations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.005
– volume: 145
  year: 2024
  ident: 10.1016/j.ijar.2024.109181_br0160
  article-title: Learning correlation information for multi-label feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109899
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  ident: 10.1016/j.ijar.2024.109181_br0340
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.39
– volume: 95
  start-page: 91
  year: 2023
  ident: 10.1016/j.ijar.2024.109181_br0190
  article-title: Two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary whale optimization for imbalanced data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.02.016
– volume: 38
  start-page: 244
  year: 2016
  ident: 10.1016/j.ijar.2024.109181_br0240
  article-title: Multi-label feature selection based on neighborhood mutual information
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.009
– start-page: 6
  year: 2013
  ident: 10.1016/j.ijar.2024.109181_br0360
  article-title: Relieff for multi-label feature selection
– volume: 29
  start-page: 19
  issue: 1
  year: 2020
  ident: 10.1016/j.ijar.2024.109181_br0120
  article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2989098
– volume: 524
  start-page: 142
  year: 2023
  ident: 10.1016/j.ijar.2024.109181_br0210
  article-title: Multi-label feature selection based on label distribution and neighborhood rough set
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.11.096
– start-page: 187
  year: 1984
  ident: 10.1016/j.ijar.2024.109181_br0170
  article-title: Rough sets and decision tables
– volume: 103
  start-page: 107
  year: 2018
  ident: 10.1016/j.ijar.2024.109181_br0290
  article-title: Three-way decision and granular computing
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2018.09.005
– volume: 4
  start-page: 323
  year: 2019
  ident: 10.1016/j.ijar.2024.109181_br0260
  article-title: Optimal granulation selection for multi-label data based on multi-granulation rough sets
  publication-title: Granul. Comput.
  doi: 10.1007/s41066-018-0110-9
– volume: 55
  start-page: 225
  issue: 1
  year: 2014
  ident: 10.1016/j.ijar.2024.109181_br0280
  article-title: Multigranulation decision-theoretic rough sets
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.03.004
– volume: 553
  start-page: 129
  year: 2021
  ident: 10.1016/j.ijar.2024.109181_br0070
  article-title: Multi-label feature selection based on the division of label topics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.12.036
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 10.1016/j.ijar.2024.109181_br0380
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 10
  start-page: 1847
  issue: 11
  year: 2022
  ident: 10.1016/j.ijar.2024.109181_br0330
  article-title: Intuitionistic fuzzy-based three-way label enhancement for multi-label classification
  publication-title: Mathematics
  doi: 10.3390/math10111847
– volume: 44
  start-page: 7955
  issue: 11
  year: 2021
  ident: 10.1016/j.ijar.2024.109181_br0010
  article-title: The emerging trends of multi-label learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3119334
– volume: 543
  start-page: 454
  year: 2021
  ident: 10.1016/j.ijar.2024.109181_br0020
  article-title: Noisy label tolerance: a new perspective of partial multi-label learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.019
SSID ssj0006748
Score 2.624767
Snippet Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109181
SubjectTerms Feature selection
Multi-label learning
Rough sets
Three-way decision
Uncertainty
Title Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets
URI https://dx.doi.org/10.1016/j.ijar.2024.109181
Volume 169
WOSCitedRecordID wos001223598800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AIEXJ
  dateStart: 20211208
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qjlJR-4rVwlsRNvjlUpggoqkArsLbK9TpXVKi3N7mp_Cj-342e2u1DRA5coGjlOlPkynpmM50PoHVMsUTotCRWmqTY4uETSVBEmTfPzEaWFTQ38-MxPT0fjcfl1MPgd9sIsZ7xtR6tVeflfVQ0yULbZOnsHdcdJQQDnoHQ4gtrh-E-KN06d-SvQWYabUEloCwcJqFzPAlPE-dAsYRPzu2AJEbPZQ0UmGuJv7Uefwzrm2b2GE8_FQ-LOx6Ej-Om06wUVPNybKca1xhS2e_mqAQ_ZMLWIzuaBo9FZ2LVgTfJT-LL-XvStcbKTJiL6SyNsrvf94uJXALrPYWSsr7WKpm4EQaxlBu7tsuNw8ZbVNDB15C5bRt_lH6YHzVSYDq8ZO-gH3-ywvbHyxXrEUOo2rcwclZmjcnPcQ7sZz0uwl7uHn47HJ3GVNyQtLkJxT-43ZLnawc0n-bPTs-bInD1GD30Egg8dcp6ggW6fokeB3QN7Y_8MdR5IOAIJA5DwGpBwABK2QMIwYgNIeAtIeBtI2AIJGyA9R98_HJ8dfSSeooMomiRzUuuasyKXNOeZKnkqSzjRklJNC80EV8rwiHCZKCEN6Waha5bXnIo85UrUKX2BdtqLVu8hDPJc16JQWckYLWRJ80JOEsYUl0rVYh-l4R1WyvevNzQqs-rv2ttHw3jNpevecuvoPKim8v6n8ysrQNot1728011eoQf9J_Aa7cyvFvoNuq-W86a7euthdg3te6u2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+for+multi-label+learning+based+on+variable-degree+multi-granulation+decision-theoretic+rough+sets&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Yu%2C+Ying&rft.au=Wan%2C+Ming&rft.au=Qian%2C+Jin&rft.au=Miao%2C+Duoqian&rft.date=2024-06-01&rft.issn=0888-613X&rft.volume=169&rft.spage=109181&rft_id=info:doi/10.1016%2Fj.ijar.2024.109181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijar_2024_109181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon