Branch-width, parse trees, and monadic second-order logic for matroids

We introduce “matroid parse trees” which, using only a limited amount of information at each node, can build up the vector representations of matroids of bounded branch-width over a finite field. We prove that if M is a family of matroids described by a sentence in the monadic second-order logic of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial theory. Series B Vol. 96; no. 3; pp. 325 - 351
Main Author: Hliněný, Petr
Format: Journal Article
Language:English
Published: Elsevier Inc 01.05.2006
Subjects:
ISSN:0095-8956, 1096-0902
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce “matroid parse trees” which, using only a limited amount of information at each node, can build up the vector representations of matroids of bounded branch-width over a finite field. We prove that if M is a family of matroids described by a sentence in the monadic second-order logic of matroids, then there is a finite tree automaton accepting exactly those parse trees which build vector representations of the bounded-branch-width representable members of M . Since the cycle matroids of graphs are representable over any field, our result directly extends the so called “ MS 2 -theorem” for graphs of bounded tree-width by Courcelle, and others. Moreover, applications and relations in areas other than matroid theory can be found, like for rank-width of graphs, or in the coding theory.
AbstractList We introduce “matroid parse trees” which, using only a limited amount of information at each node, can build up the vector representations of matroids of bounded branch-width over a finite field. We prove that if M is a family of matroids described by a sentence in the monadic second-order logic of matroids, then there is a finite tree automaton accepting exactly those parse trees which build vector representations of the bounded-branch-width representable members of M . Since the cycle matroids of graphs are representable over any field, our result directly extends the so called “ MS 2 -theorem” for graphs of bounded tree-width by Courcelle, and others. Moreover, applications and relations in areas other than matroid theory can be found, like for rank-width of graphs, or in the coding theory.
Author Hliněný, Petr
Author_xml – sequence: 1
  givenname: Petr
  surname: Hliněný
  fullname: Hliněný, Petr
  email: petr.hlineny@vsb.cz, hlineny@member.ams.org
  organization: School of Mathematical and Computing Sciences, Victoria University of Wellington, New Zealand
BookMark eNp9kM1KAzEURoNUsK2-gKt5gGa8mZ80A260WBUKbnQdMsmNzdAmJQmKb--UunLR1YEL54N7ZmTig0dCbhmUDBi_G8pB576sANoSRDnigkwZdJxCB9WETAG6loqu5VdkltIAAHW9FFOyfozK6y39diZvF8VBxYRFjohpUShvin3wyjhdJNTBGxqiwVjswud4siEWe5VjcCZdk0urdglv_jgnH-un99UL3bw9v64eNlTXAJnahvW8E6JCxhGQ87axFbAWhamZ5bznreo56r6pFON2qTvbQdOzVjdcLI2t50ScdnUMKUW0Urussgs-R-V2koE89pCDPPaQxx4ShBwxqtU_9RDdXsWf89L9ScLxqS-HUSbt0Gs0LqLO0gR3Tv8FfTd7jA
CitedBy_id crossref_primary_10_1016_j_ejc_2006_06_005
crossref_primary_10_1016_j_ejc_2011_12_010
crossref_primary_10_1007_s00453_020_00720_8
crossref_primary_10_1109_TIT_2017_2740283
crossref_primary_10_1137_19M1285895
crossref_primary_10_1137_17M1151250
crossref_primary_10_1007_s10107_023_02048_x
crossref_primary_10_1016_j_jctb_2006_04_003
crossref_primary_10_1016_j_jctb_2007_02_005
crossref_primary_10_1016_j_tcs_2005_10_006
crossref_primary_10_1137_070685920
crossref_primary_10_1016_j_ejc_2012_07_024
crossref_primary_10_1007_s00453_022_00939_7
crossref_primary_10_1137_20M1353502
crossref_primary_10_1016_j_ejc_2020_103186
crossref_primary_10_1007_s00224_012_9399_y
crossref_primary_10_1137_17M1120129
crossref_primary_10_1016_j_cosrev_2011_09_002
crossref_primary_10_1007_s00453_015_9977_x
crossref_primary_10_1137_22M153937X
crossref_primary_10_1016_j_ejc_2016_08_005
crossref_primary_10_1016_j_jctb_2025_07_006
Cites_doi 10.1007/3-540-63165-8_217
10.1007/3-540-18771-5_50
10.1007/BF01758777
10.1016/j.jal.2005.08.004
10.1137/S0097539702418589
10.1016/S0095-8956(02)00046-1
10.1017/CBO9781107325678.009
10.1006/jctb.2001.2082
10.1007/978-3-540-45138-9_41
10.1016/0095-8956(91)90061-N
10.1007/s002249910009
10.1016/S0166-218X(99)00184-5
10.1007/3-540-19488-6_105
10.1017/S0963548305007297
10.1090/conm/147/01199
10.1016/0890-5401(90)90043-H
10.1016/0168-0072(91)90054-P
ContentType Journal Article
Copyright 2005 Elsevier Inc.
Copyright_xml – notice: 2005 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jctb.2005.08.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0902
EndPage 351
ExternalDocumentID 10_1016_j_jctb_2005_08_005
S0095895605001073
GroupedDBID --K
--M
--Z
-DZ
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
S10
SDF
SDG
SDP
SES
SEW
SPC
SSW
SSZ
T5K
TN5
UQL
VQA
WH7
WUQ
XJT
XPP
YQT
ZCG
ZKB
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-f41b69882e16e0e6654f2015e8d31f66b65ab6ecb42a16f7c9f904b15c4687df3
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000237476800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0095-8956
IngestDate Sat Nov 29 03:47:26 EST 2025
Tue Nov 18 22:27:07 EST 2025
Fri Feb 23 02:34:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords secondary 68R05
Fixed-parameter complexity
03D05
Matroid representation
Monadic second-order logic
primary 05B35
Tree automaton
Branch-width
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-f41b69882e16e0e6654f2015e8d31f66b65ab6ecb42a16f7c9f904b15c4687df3
OpenAccessLink https://dx.doi.org/10.1016/j.jctb.2005.08.005
PageCount 27
ParticipantIDs crossref_citationtrail_10_1016_j_jctb_2005_08_005
crossref_primary_10_1016_j_jctb_2005_08_005
elsevier_sciencedirect_doi_10_1016_j_jctb_2005_08_005
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of combinatorial theory. Series B
PublicationYear 2006
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References S. Arnborg, J. Lagergren, D. Seese, Problems easy for tree-decomposible graphs (extended abstract), Proceedings of the 15th Colloq. Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 317, Springer, Berlin, 1988, pp. 38–51.
Oxley (bib21) 1992
Robertson, Seymour (bib23) 1991; 52
B. Courcelle, Sang-Il Oum, Vertex-minors, monadic second-order logic, and a conjecture by Seese, 2005, submitted for publication.
P. Hliněný, The tutte polynomial for matroids of bounded branch-width, combinatorics, Probab. Comput., 2005, to appear.
P. Hliněný, D. Seese, Trees, grids, and MSO decidability: from graphs to matroids, Theoret. Computer Sci., 2005, to appear. (Extended abstract in: IWPEC 2004, Lecture Notes in Computer Science, vol. 3162, Springer, Berlin, 2004, pp. 96–107.)
Courcelle (bib7) 1990; 85
Sang-Il Oum, Approximating Rank-width and Clique-width Quickly, in: Proceedings WG 2005, Lecture Notes in Computer Science 3787 (2005), Springer Verlag, to appear.
Geelen, Gerards, Robertson, Whittle (bib12) 2003; 88
P. Hliněný, On Some Hard Problems on Matroid Spikes, submitted (2005).
Sang-Il Oum, P.D. Seymour, Approximation Algorithm to the Clique-Width of a Graph, 2004, submitted for publication.
H.L. Bodlaender, D.M. Thilikos, Constructive linear time algorithms for branchwidth, Proceedings 24th ICALP, Lecture Notes in Computer Science, vol. 1256, 1997, pp. 627–637.
B. Courcelle, On context-free sets of graphs and their monadic second-order theory, in: Graph-Grammars and Their Application to Computer Science, Proceedings of the International Workshop on Graph Grammars 1986, Lecture Notes in Computer Science, vol. 291, 1987, pp. 133–146.
Borie, Parker, Tovey (bib5) 1992; 7
K.A. Abrahamson, M.R. Fellows, Finite Automata, bounded treewidth, and well-quasiordering, in: Graph Structure Theory, Contemporary Mathematics, vol. 147, American Mathematical Society, 1993, pp. 539–564.
Representable Matroid, manuscript, 2003.
N. Robertson, P.D. Seymour, Graph Minors—A Survey, Surveys in Combinatorics, Cambridge University Press, Cambridge, 1985, pp. 153–171.
Courcelle, Olariu (bib9) 2000; 101
J.F. Geelen, A.H.M. Gerards, G.P. Whittle, Excluding a Planar Graph from a
P. Hliněný, G.P. Whittle, Matroid Tree-Width, submitted for publication. Ext. abstract in: Eurocomb’03, ITI Series 2003–145, Charles University 2003.
P. Hliněný, On matroid properties definable in the MSO logic, in: Math Foundations of Computer Science MFCS 2003, Lecture Notes in Computer Science, vol. 2747, Springer, Berlin, 2003, pp. 470–479.
Courcelle, Makowsky, Rotics (bib8) 2000; 33
Downey, Fellows (bib11) 1999
Seese (bib26) 1991; 53
Geelen, Gerards, Whittle (bib13) 2002; 84
P. Hliněný, A parametrized algorithm for matroid branch-width, SIAM J. Comput., 2005, to appear.
Bodlaender (bib3) 1993; 11
Courcelle (10.1016/j.jctb.2005.08.005_bib8) 2000; 33
Geelen (10.1016/j.jctb.2005.08.005_bib12) 2003; 88
10.1016/j.jctb.2005.08.005_bib10
Borie (10.1016/j.jctb.2005.08.005_bib5) 1992; 7
10.1016/j.jctb.2005.08.005_bib16
10.1016/j.jctb.2005.08.005_bib17
10.1016/j.jctb.2005.08.005_bib18
10.1016/j.jctb.2005.08.005_bib19
Downey (10.1016/j.jctb.2005.08.005_bib11) 1999
10.1016/j.jctb.2005.08.005_bib14
10.1016/j.jctb.2005.08.005_bib15
10.1016/j.jctb.2005.08.005_bib20
10.1016/j.jctb.2005.08.005_bib22
Geelen (10.1016/j.jctb.2005.08.005_bib13) 2002; 84
Oxley (10.1016/j.jctb.2005.08.005_bib21) 1992
Robertson (10.1016/j.jctb.2005.08.005_bib23) 1991; 52
Bodlaender (10.1016/j.jctb.2005.08.005_bib3) 1993; 11
Courcelle (10.1016/j.jctb.2005.08.005_bib7) 1990; 85
Seese (10.1016/j.jctb.2005.08.005_bib26) 1991; 53
10.1016/j.jctb.2005.08.005_bib6
Courcelle (10.1016/j.jctb.2005.08.005_bib9) 2000; 101
10.1016/j.jctb.2005.08.005_bib4
10.1016/j.jctb.2005.08.005_bib2
10.1016/j.jctb.2005.08.005_bib1
10.1016/j.jctb.2005.08.005_bib24
10.1016/j.jctb.2005.08.005_bib25
References_xml – reference: P. Hliněný, D. Seese, Trees, grids, and MSO decidability: from graphs to matroids, Theoret. Computer Sci., 2005, to appear. (Extended abstract in: IWPEC 2004, Lecture Notes in Computer Science, vol. 3162, Springer, Berlin, 2004, pp. 96–107.)
– volume: 88
  start-page: 261
  year: 2003
  end-page: 265
  ident: bib12
  article-title: On the excluded minors for the matroids of branch-width
  publication-title: J. Combin. Theory Ser. B
– reference: K.A. Abrahamson, M.R. Fellows, Finite Automata, bounded treewidth, and well-quasiordering, in: Graph Structure Theory, Contemporary Mathematics, vol. 147, American Mathematical Society, 1993, pp. 539–564.
– volume: 7
  start-page: 555
  year: 1992
  end-page: 582
  ident: bib5
  article-title: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families
  publication-title: Algorithmica
– reference: P. Hliněný, The tutte polynomial for matroids of bounded branch-width, combinatorics, Probab. Comput., 2005, to appear.
– reference: N. Robertson, P.D. Seymour, Graph Minors—A Survey, Surveys in Combinatorics, Cambridge University Press, Cambridge, 1985, pp. 153–171.
– reference: P. Hliněný, On matroid properties definable in the MSO logic, in: Math Foundations of Computer Science MFCS 2003, Lecture Notes in Computer Science, vol. 2747, Springer, Berlin, 2003, pp. 470–479.
– volume: 11
  start-page: 1
  year: 1993
  end-page: 21
  ident: bib3
  article-title: A tourist guide through treewidth
  publication-title: Acta Cybernetica
– year: 1992
  ident: bib21
  article-title: Matroid Theory
– volume: 52
  start-page: 153
  year: 1991
  end-page: 190
  ident: bib23
  article-title: Graph minors X. obstructions to tree-decomposition
  publication-title: J. Combin. Theory Ser. B
– reference: S. Arnborg, J. Lagergren, D. Seese, Problems easy for tree-decomposible graphs (extended abstract), Proceedings of the 15th Colloq. Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 317, Springer, Berlin, 1988, pp. 38–51.
– reference: P. Hliněný, A parametrized algorithm for matroid branch-width, SIAM J. Comput., 2005, to appear.
– reference: Sang-Il Oum, P.D. Seymour, Approximation Algorithm to the Clique-Width of a Graph, 2004, submitted for publication.
– volume: 84
  start-page: 270
  year: 2002
  end-page: 290
  ident: bib13
  article-title: Branch-width and well-quasi-ordering in matroids and graphs
  publication-title: J. Combin. Theory Ser. B
– reference: P. Hliněný, On Some Hard Problems on Matroid Spikes, submitted (2005).
– volume: 101
  start-page: 77
  year: 2000
  end-page: 114
  ident: bib9
  article-title: Upper bounds to the clique width of graphs
  publication-title: Discrete Appl. Math.
– reference: H.L. Bodlaender, D.M. Thilikos, Constructive linear time algorithms for branchwidth, Proceedings 24th ICALP, Lecture Notes in Computer Science, vol. 1256, 1997, pp. 627–637.
– reference: B. Courcelle, Sang-Il Oum, Vertex-minors, monadic second-order logic, and a conjecture by Seese, 2005, submitted for publication.
– volume: 53
  start-page: 169
  year: 1991
  end-page: 195
  ident: bib26
  article-title: The structure of models of decidable monadic theories of graphs
  publication-title: Ann. Pure Appl. Logic
– reference: -Representable Matroid, manuscript, 2003.
– reference: J.F. Geelen, A.H.M. Gerards, G.P. Whittle, Excluding a Planar Graph from a
– reference: B. Courcelle, On context-free sets of graphs and their monadic second-order theory, in: Graph-Grammars and Their Application to Computer Science, Proceedings of the International Workshop on Graph Grammars 1986, Lecture Notes in Computer Science, vol. 291, 1987, pp. 133–146.
– reference: Sang-Il Oum, Approximating Rank-width and Clique-width Quickly, in: Proceedings WG 2005, Lecture Notes in Computer Science 3787 (2005), Springer Verlag, to appear.
– reference: P. Hliněný, G.P. Whittle, Matroid Tree-Width, submitted for publication. Ext. abstract in: Eurocomb’03, ITI Series 2003–145, Charles University 2003.
– year: 1999
  ident: bib11
  article-title: Parametrized Complexity
– volume: 33
  start-page: 125
  year: 2000
  end-page: 150
  ident: bib8
  article-title: Linear time solvable optimization problems on graphs of bounded clique-width
  publication-title: Theory Comput. Systems
– volume: 85
  start-page: 12
  year: 1990
  end-page: 75
  ident: bib7
  article-title: The monadic second-order logic of graphs I. Recognizable sets of finite graphs
  publication-title: Inform. and Comput.
– ident: 10.1016/j.jctb.2005.08.005_bib4
  doi: 10.1007/3-540-63165-8_217
– ident: 10.1016/j.jctb.2005.08.005_bib19
– ident: 10.1016/j.jctb.2005.08.005_bib25
– ident: 10.1016/j.jctb.2005.08.005_bib6
  doi: 10.1007/3-540-18771-5_50
– ident: 10.1016/j.jctb.2005.08.005_bib15
– year: 1992
  ident: 10.1016/j.jctb.2005.08.005_bib21
– volume: 7
  start-page: 555
  year: 1992
  ident: 10.1016/j.jctb.2005.08.005_bib5
  article-title: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families
  publication-title: Algorithmica
  doi: 10.1007/BF01758777
– ident: 10.1016/j.jctb.2005.08.005_bib10
  doi: 10.1016/j.jal.2005.08.004
– ident: 10.1016/j.jctb.2005.08.005_bib18
  doi: 10.1137/S0097539702418589
– volume: 88
  start-page: 261
  year: 2003
  ident: 10.1016/j.jctb.2005.08.005_bib12
  article-title: On the excluded minors for the matroids of branch-width k
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/S0095-8956(02)00046-1
– ident: 10.1016/j.jctb.2005.08.005_bib22
  doi: 10.1017/CBO9781107325678.009
– ident: 10.1016/j.jctb.2005.08.005_bib20
– volume: 84
  start-page: 270
  year: 2002
  ident: 10.1016/j.jctb.2005.08.005_bib13
  article-title: Branch-width and well-quasi-ordering in matroids and graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.2001.2082
– ident: 10.1016/j.jctb.2005.08.005_bib16
  doi: 10.1007/978-3-540-45138-9_41
– volume: 52
  start-page: 153
  year: 1991
  ident: 10.1016/j.jctb.2005.08.005_bib23
  article-title: Graph minors X. obstructions to tree-decomposition
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(91)90061-N
– volume: 33
  start-page: 125
  year: 2000
  ident: 10.1016/j.jctb.2005.08.005_bib8
  article-title: Linear time solvable optimization problems on graphs of bounded clique-width
  publication-title: Theory Comput. Systems
  doi: 10.1007/s002249910009
– volume: 101
  start-page: 77
  year: 2000
  ident: 10.1016/j.jctb.2005.08.005_bib9
  article-title: Upper bounds to the clique width of graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(99)00184-5
– ident: 10.1016/j.jctb.2005.08.005_bib24
– ident: 10.1016/j.jctb.2005.08.005_bib2
  doi: 10.1007/3-540-19488-6_105
– year: 1999
  ident: 10.1016/j.jctb.2005.08.005_bib11
– ident: 10.1016/j.jctb.2005.08.005_bib14
– ident: 10.1016/j.jctb.2005.08.005_bib17
  doi: 10.1017/S0963548305007297
– volume: 11
  start-page: 1
  year: 1993
  ident: 10.1016/j.jctb.2005.08.005_bib3
  article-title: A tourist guide through treewidth
  publication-title: Acta Cybernetica
– ident: 10.1016/j.jctb.2005.08.005_bib1
  doi: 10.1090/conm/147/01199
– volume: 85
  start-page: 12
  year: 1990
  ident: 10.1016/j.jctb.2005.08.005_bib7
  article-title: The monadic second-order logic of graphs I. Recognizable sets of finite graphs
  publication-title: Inform. and Comput.
  doi: 10.1016/0890-5401(90)90043-H
– volume: 53
  start-page: 169
  year: 1991
  ident: 10.1016/j.jctb.2005.08.005_bib26
  article-title: The structure of models of decidable monadic theories of graphs
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/0168-0072(91)90054-P
SSID ssj0003378
Score 1.9743085
Snippet We introduce “matroid parse trees” which, using only a limited amount of information at each node, can build up the vector representations of matroids of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Branch-width
Fixed-parameter complexity
Matroid representation
Monadic second-order logic
Tree automaton
Title Branch-width, parse trees, and monadic second-order logic for matroids
URI https://dx.doi.org/10.1016/j.jctb.2005.08.005
Volume 96
WOSCitedRecordID wos000237476800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0902
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003378
  issn: 0095-8956
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wCHiU8xGMgHbl0mp44d-7juQwPBhMRAvUWxY4tWEKq2wP583rPdNBvTBEhcoiqqU9fvp_eV996PkFcjqVRjpMyMK-ussABjLb3KwDIzbgw3eWiP_vS2PDtTk4l-n-rnl4FOoGxbdXGh5_9V1HAPhI2ts38h7u6hcAM-g9DhCmKH6x8JfoxUGZ-zn9MmpkzmELo6LCiPCgET5bCXupna4RKj4SYL4zeHQQmGqsOvmB-fxg7gaxxX2DSE0xish56T0Ny_j0oHgu4NifMpMsGDp6rHLb6MHx-lauDF1TyD6OcZugaYS_WZ6KFlSos0zTrqUIZ1zZpdUrKRtjaBifc0Jo99z8n48jh99je9HlMMs_2ZXZmUCMMaWLGxYl1t4QfcE26JCQx4S36bbI1KodWAbB28Pp686Qw158lQp_-Qeqpi-d_VX7reb-n5Iuf3yXaSBT2Iwn9Abrn2Ibn3rpvAu3xETvow2KMBBDSAYI8CBGiCAO1DgAYIUIAAXUPgMfl4cnx-eJolzozMcsZWmS9yIzWETS6Xjjnklvbg4wmnGp57KY0UtZHOmmJU59KXVnvNCpMLW0hVNp4_IYP2W-ueElo4Z8saXMTG1oVQVnPj4Zm-UJ6NGs13SL4-kcqmgfLIa_KlWlcOzio8RWQ6FRWSnTKxQ4bdmnkcp3Ljt8X6oKvkEEZHrwJc3LDu2T-ue07ubpC_SwarxXf3gtyxP1bT5eJlgs8vz5aBwg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Branch-width%2C+parse+trees%2C+and+monadic+second-order+logic+for+matroids&rft.jtitle=Journal+of+combinatorial+theory.+Series+B&rft.au=Hlin%C4%9Bn%C3%BD%2C+Petr&rft.date=2006-05-01&rft.pub=Elsevier+Inc&rft.issn=0095-8956&rft.eissn=1096-0902&rft.volume=96&rft.issue=3&rft.spage=325&rft.epage=351&rft_id=info:doi/10.1016%2Fj.jctb.2005.08.005&rft.externalDocID=S0095895605001073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-8956&client=summon