Branch-width, parse trees, and monadic second-order logic for matroids

We introduce “matroid parse trees” which, using only a limited amount of information at each node, can build up the vector representations of matroids of bounded branch-width over a finite field. We prove that if M is a family of matroids described by a sentence in the monadic second-order logic of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial theory. Series B Ročník 96; číslo 3; s. 325 - 351
Hlavní autor: Hliněný, Petr
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2006
Témata:
ISSN:0095-8956, 1096-0902
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce “matroid parse trees” which, using only a limited amount of information at each node, can build up the vector representations of matroids of bounded branch-width over a finite field. We prove that if M is a family of matroids described by a sentence in the monadic second-order logic of matroids, then there is a finite tree automaton accepting exactly those parse trees which build vector representations of the bounded-branch-width representable members of M . Since the cycle matroids of graphs are representable over any field, our result directly extends the so called “ MS 2 -theorem” for graphs of bounded tree-width by Courcelle, and others. Moreover, applications and relations in areas other than matroid theory can be found, like for rank-width of graphs, or in the coding theory.
ISSN:0095-8956
1096-0902
DOI:10.1016/j.jctb.2005.08.005