A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem

Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study focuses on energy-efficient heterogeneous DHFSP. A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local sea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 237; s. 121570
Hlavní autori: Zhang, Wenqiang, Li, Chen, Gen, Mitsuo, Yang, Weidong, Zhang, Guohui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2024
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study focuses on energy-efficient heterogeneous DHFSP. A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search is proposed in order to optimize both makespan and total energy consumption. Particle swarm optimization with multi-group is specifically designed as a global search strategy to improve the fast convergence performance of solutions in multi-direction of Pareto front. To improve the problem-specific knowledge search, two local search strategies are designed to further improve the quality and diversity of solutions. In addition, Q-learning is utilized to guide variable neighborhood search to better balance the exploration and exploitation of algorithms. This study investigates the effect of parameter setting and conducts extensive numerical tests. The comparative results and statistical analysis demonstrate the superior convergence and distribution performance of the proposed algorithm. •Multi-group PSO as global search enhances multi-direction convergence of PF.•Two local search strategies cooperate with particle swarm optimization.•Inter-factory local search with insert and swap between critical factories.•Intra-factory local search with Q-learning and VNS within factories.•Two initialization methods increase the diversity of population.
AbstractList Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study focuses on energy-efficient heterogeneous DHFSP. A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search is proposed in order to optimize both makespan and total energy consumption. Particle swarm optimization with multi-group is specifically designed as a global search strategy to improve the fast convergence performance of solutions in multi-direction of Pareto front. To improve the problem-specific knowledge search, two local search strategies are designed to further improve the quality and diversity of solutions. In addition, Q-learning is utilized to guide variable neighborhood search to better balance the exploration and exploitation of algorithms. This study investigates the effect of parameter setting and conducts extensive numerical tests. The comparative results and statistical analysis demonstrate the superior convergence and distribution performance of the proposed algorithm. •Multi-group PSO as global search enhances multi-direction convergence of PF.•Two local search strategies cooperate with particle swarm optimization.•Inter-factory local search with insert and swap between critical factories.•Intra-factory local search with Q-learning and VNS within factories.•Two initialization methods increase the diversity of population.
ArticleNumber 121570
Author Li, Chen
Zhang, Wenqiang
Zhang, Guohui
Gen, Mitsuo
Yang, Weidong
Author_xml – sequence: 1
  givenname: Wenqiang
  orcidid: 0000-0002-8214-0693
  surname: Zhang
  fullname: Zhang, Wenqiang
  email: zhangwq@haut.edu.cn
  organization: College of Information Science and Engineering, Henan University of Technology, China
– sequence: 2
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  email: lichen_haut@163.com
  organization: College of Information Science and Engineering, Henan University of Technology, China
– sequence: 3
  givenname: Mitsuo
  orcidid: 0000-0002-3670-1357
  surname: Gen
  fullname: Gen, Mitsuo
  email: gen@flsi.or.jp
  organization: Fuzzy Logic Systems Institute/Tokyo University of Science, Japan
– sequence: 4
  givenname: Weidong
  surname: Yang
  fullname: Yang, Weidong
  email: mengguyang@163.com
  organization: Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, China
– sequence: 5
  givenname: Guohui
  orcidid: 0000-0001-9143-2922
  surname: Zhang
  fullname: Zhang, Guohui
  email: zgh_hust@qq.com
  organization: School of Management Engineering, Zhengzhou University of Aeronautics, China
BookMark eNp9kc2KFDEQgIOs4OzqC3jKC2RM0jOdHvCyLOoKCyLoOeSnMl1DutMkmR3GJ_PxzDiePOylCir1VVH5bsnNnGYg5L3ga8FF_-GwhnIya8lltxZSbBV_RVZiUB3r1a67ISu-2yq2EWrzhtyWcuBcKM7Vivy-p9MxVkz2AK7iM9AJJqjoqIn7lLGOEz21SBeTWzUCbXvyRNNSccJfppEzNbOn31kEk2ec98yaAp7G5EykpRXdSEPKFGbI-zODENAhzJV6LDWjPdbWPUKFnPatJx0LHc82o6chphMrY1pocSP4Y2zT6ZKTjTC9Ja-DiQXe_ct35OfnTz8eHtnTty9fH-6fmOs4ryxICdy6AIPlxg6b7Vb1wnoPSlg5uPbq-74LG--lsE44P8BgrFdhx6V0wXR3ZLjOdTmVkiFoh_Xv2TUbjFpwfTGgD_piQF8M6KuBhsr_0CXjZPL5ZejjFYJ21DNC1uXyWw485mZI-4Qv4X8Ai_epzw
CitedBy_id crossref_primary_10_1007_s12293_025_00456_4
crossref_primary_10_1109_TEVC_2024_3443874
crossref_primary_10_1016_j_cie_2025_110917
crossref_primary_10_1016_j_engappai_2023_107818
crossref_primary_10_1016_j_swevo_2025_102050
crossref_primary_10_1002_cpe_70090
crossref_primary_10_1016_j_eswa_2024_124349
crossref_primary_10_1109_TEVC_2024_3399314
crossref_primary_10_1007_s13369_024_09429_0
crossref_primary_10_1016_j_engappai_2024_109915
crossref_primary_10_1016_j_asoc_2025_113475
crossref_primary_10_1080_00207543_2025_2553820
crossref_primary_10_1016_j_cor_2025_107267
crossref_primary_10_1016_j_swevo_2025_101996
crossref_primary_10_1109_TSMC_2024_3488205
crossref_primary_10_1016_j_eswa_2024_125866
crossref_primary_10_1007_s12190_024_02364_1
crossref_primary_10_1007_s11227_025_06938_z
crossref_primary_10_3390_jmse13061153
crossref_primary_10_1109_TIM_2024_3453320
crossref_primary_10_3390_electronics12234732
crossref_primary_10_1016_j_swevo_2024_101625
crossref_primary_10_1080_0305215X_2025_2519637
crossref_primary_10_1016_j_asoc_2024_112689
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_3390_pr13092930
crossref_primary_10_1016_j_eswa_2025_128198
crossref_primary_10_1016_j_swevo_2025_102015
crossref_primary_10_3390_systems13030170
crossref_primary_10_1016_j_swevo_2025_102035
crossref_primary_10_1016_j_cor_2024_106919
crossref_primary_10_1016_j_engappai_2025_110882
crossref_primary_10_1016_j_aej_2025_05_071
crossref_primary_10_1016_j_engappai_2025_111771
crossref_primary_10_1016_j_ejor_2025_07_055
crossref_primary_10_1016_j_swevo_2023_101455
crossref_primary_10_1016_j_swevo_2025_101991
crossref_primary_10_1016_j_plrev_2025_08_007
crossref_primary_10_1007_s12351_024_00844_7
crossref_primary_10_1016_j_engappai_2024_109688
crossref_primary_10_1080_00207543_2024_2357740
crossref_primary_10_3233_JIFS_238627
crossref_primary_10_1007_s00158_025_04053_4
crossref_primary_10_1016_j_engappai_2024_109851
crossref_primary_10_26599_TST_2024_9010128
crossref_primary_10_1016_j_engappai_2025_111187
crossref_primary_10_1016_j_cor_2025_107079
crossref_primary_10_1038_s41598_025_02218_1
crossref_primary_10_1016_j_eswa_2024_124194
crossref_primary_10_1016_j_eswa_2025_127247
crossref_primary_10_1016_j_eswa_2024_125002
crossref_primary_10_1016_j_swevo_2024_101686
crossref_primary_10_1016_j_swevo_2025_102158
Cites_doi 10.1016/j.knosys.2023.110309
10.1016/j.eswa.2022.117256
10.1109/TEVC.2022.3150771
10.1109/TETCI.2020.3022372
10.1016/j.swevo.2011.02.002
10.26599/TST.2021.9010007
10.1016/j.eswa.2019.113151
10.1109/TEVC.2011.2132725
10.1016/j.cie.2020.106778
10.1007/s10845-013-0814-2
10.3934/mbe.2022410
10.1016/j.swevo.2016.06.002
10.1016/j.eswa.2020.113216
10.1080/00207543.2020.1780333
10.1016/j.omega.2019.102117
10.1016/j.cor.2019.05.002
10.1109/TASE.2021.3119353
10.1016/j.eswa.2023.119805
10.1016/j.eswa.2021.115453
10.1016/j.cie.2018.09.007
10.1016/j.knosys.2019.104894
10.1109/TSMC.2015.2416127
10.1109/TEVC.2021.3106168
10.1016/j.cie.2019.03.019
10.1016/S0377-2217(97)00423-2
10.1016/j.ejor.2004.06.038
10.1016/j.knosys.2020.105527
10.1016/j.eswa.2017.09.032
10.1109/ACCESS.2019.2917273
10.1016/j.engappai.2016.04.005
10.1080/19942060.2018.1517052
10.23919/CSMS.2021.0017
10.1109/ACCESS.2020.2996305
10.1016/j.cor.2021.105400
10.1007/s10845-014-0890-y
10.1016/j.ejor.2014.07.004
10.1016/j.engappai.2020.103540
10.1016/j.knosys.2020.105536
10.1080/0305215X.2019.1674295
10.1016/j.ejor.2020.07.059
10.1016/j.ejor.2009.01.008
10.1007/s12293-022-00364-x
10.1016/j.swevo.2022.101190
10.1016/j.eswa.2022.119151
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121570
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121570
S0957417423020729
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-f22e0bcfe8b0ab8455761bdde71b28c22ed663f4dd21bc1cd8e8abd7f9022cfa3
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084350400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:08:00 EST 2025
Tue Nov 18 21:32:25 EST 2025
Fri Feb 23 02:35:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Memetic algorithm
Q-learning
Energy-efficient
Particle swarm optimization
Hybrid flow-shop scheduling
Heterogeneous distributed scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-f22e0bcfe8b0ab8455761bdde71b28c22ed663f4dd21bc1cd8e8abd7f9022cfa3
ORCID 0000-0002-3670-1357
0000-0002-8214-0693
0000-0001-9143-2922
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_121570
crossref_primary_10_1016_j_eswa_2023_121570
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121570
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fernandez-Viagas, Perez-Gonzalez, Framinan (b14) 2019; 109
Zhang, Li, Gen, Yang, Zhang, Zhang (b42) 2022; 19
Chen, Yang, Li, Wang (b8) 2020; 149
Gholami, Sun (b15) 2023
Shao, Shao, Pi (b26) 2021; 19
Mazyavkina, Sviridov, Ivanov, Burnaev (b21) 2021; 134
Zhang, Xing, Zhang, He (b46) 2020; 8
Jiang, Wang, Wang (b18) 2021; 26
Hsu, Kao, Lai (b17) 2016; 53
Zhang, Wang, Yang, Gen (b44) 2019; 130
Xiong, Xing, Wang (b36) 2015; 240
Behnamian, Fatemi Ghomi (b2) 2016; 27
Wang, Xu, Chau, Xu (b34) 2020; 150
Chen, Ong, Lim, Tan (b7) 2011; 15
Shao, Shao, Pi (b27) 2021; 183
Cai, Lei, Li (b4) 2021; 59
Diaz, López-Ibáñez (b13) 2021; 289
Shao, Shao, Pi (b29) 2023; 214
Wu, Che (b35) 2020; 94
Sutton, Barto (b30) 1999; 17
Wang, Wang (b33) 2021; 26
Hao, Li, Du, Song, Duan, Zhang (b16) 2019; 7
Qin, Han, Liu, Li, Pan (b23) 2022; 201
Zhang, Yang, Zhang, Gen (b47) 2020; 145
Yang, Xu (b37) 2020
Yu, Gen (b39) 2010
Deng, Wang (b11) 2017; 32
Zhang, Xing (b45) 2018; 125
Lei, Wang (b19) 2020; 52
Zhang, Liu, Wang, Yu, Xing (b43) 2022; 26
Shao, Shao, Pi (b28) 2022; 75
Liu, Li, Gao, Wang (b20) 2022; 14
Zhang, Hou, Li, Yang, Gen (b41) 2021; 1
Shao, Shao, Pi (b25) 2020; 194
Cai, Zhou, Lei (b6) 2020; 38
De Giovanni, Pezzella (b10) 2010; 200
Ruiz, Maroto (b24) 2006; 169
Ying, Lin (b38) 2018; 92
Ali Ghorbani, Kazempour, Chau, Shamshirband, Taherei Ghazvinei (b1) 2018; 12
Brah, Loo (b3) 1999; 113
Derrac, García, Molina, Herrera (b12) 2011; 1
Zheng, Wang, Wang (b48) 2020; 194
Zhang, Gen, Jo (b40) 2014; 25
Cui, Li, Gao (b9) 2023
Meng, Pan, Wang (b22) 2019; 184
Wang, Wang (b32) 2020; 5
Cai, Zhou, Lei (b5) 2020; 90
Wang, Wang (b31) 2015; 46
Cai (10.1016/j.eswa.2023.121570_b6) 2020; 38
Shao (10.1016/j.eswa.2023.121570_b25) 2020; 194
Wang (10.1016/j.eswa.2023.121570_b31) 2015; 46
Xiong (10.1016/j.eswa.2023.121570_b36) 2015; 240
Zhang (10.1016/j.eswa.2023.121570_b43) 2022; 26
Cui (10.1016/j.eswa.2023.121570_b9) 2023
Chen (10.1016/j.eswa.2023.121570_b7) 2011; 15
Deng (10.1016/j.eswa.2023.121570_b11) 2017; 32
Zhang (10.1016/j.eswa.2023.121570_b41) 2021; 1
Cai (10.1016/j.eswa.2023.121570_b4) 2021; 59
Shao (10.1016/j.eswa.2023.121570_b28) 2022; 75
Hsu (10.1016/j.eswa.2023.121570_b17) 2016; 53
Ying (10.1016/j.eswa.2023.121570_b38) 2018; 92
Zhang (10.1016/j.eswa.2023.121570_b42) 2022; 19
Derrac (10.1016/j.eswa.2023.121570_b12) 2011; 1
Zhang (10.1016/j.eswa.2023.121570_b47) 2020; 145
Hao (10.1016/j.eswa.2023.121570_b16) 2019; 7
Yang (10.1016/j.eswa.2023.121570_b37) 2020
Cai (10.1016/j.eswa.2023.121570_b5) 2020; 90
Zheng (10.1016/j.eswa.2023.121570_b48) 2020; 194
Qin (10.1016/j.eswa.2023.121570_b23) 2022; 201
Yu (10.1016/j.eswa.2023.121570_b39) 2010
Wu (10.1016/j.eswa.2023.121570_b35) 2020; 94
Lei (10.1016/j.eswa.2023.121570_b19) 2020; 52
Shao (10.1016/j.eswa.2023.121570_b29) 2023; 214
Chen (10.1016/j.eswa.2023.121570_b8) 2020; 149
Zhang (10.1016/j.eswa.2023.121570_b44) 2019; 130
De Giovanni (10.1016/j.eswa.2023.121570_b10) 2010; 200
Wang (10.1016/j.eswa.2023.121570_b32) 2020; 5
Wang (10.1016/j.eswa.2023.121570_b33) 2021; 26
Wang (10.1016/j.eswa.2023.121570_b34) 2020; 150
Ruiz (10.1016/j.eswa.2023.121570_b24) 2006; 169
Ali Ghorbani (10.1016/j.eswa.2023.121570_b1) 2018; 12
Behnamian (10.1016/j.eswa.2023.121570_b2) 2016; 27
Zhang (10.1016/j.eswa.2023.121570_b46) 2020; 8
Brah (10.1016/j.eswa.2023.121570_b3) 1999; 113
Meng (10.1016/j.eswa.2023.121570_b22) 2019; 184
Zhang (10.1016/j.eswa.2023.121570_b40) 2014; 25
Liu (10.1016/j.eswa.2023.121570_b20) 2022; 14
Diaz (10.1016/j.eswa.2023.121570_b13) 2021; 289
Sutton (10.1016/j.eswa.2023.121570_b30) 1999; 17
Shao (10.1016/j.eswa.2023.121570_b27) 2021; 183
Jiang (10.1016/j.eswa.2023.121570_b18) 2021; 26
Fernandez-Viagas (10.1016/j.eswa.2023.121570_b14) 2019; 109
Gholami (10.1016/j.eswa.2023.121570_b15) 2023
Mazyavkina (10.1016/j.eswa.2023.121570_b21) 2021; 134
Zhang (10.1016/j.eswa.2023.121570_b45) 2018; 125
Shao (10.1016/j.eswa.2023.121570_b26) 2021; 19
References_xml – volume: 184
  year: 2019
  ident: b22
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowledge-Based Systems
– volume: 19
  start-page: 3379
  year: 2021
  end-page: 3394
  ident: b26
  article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 8
  start-page: 96115
  year: 2020
  end-page: 96128
  ident: b46
  article-title: Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem
  publication-title: IEEE Access
– volume: 92
  start-page: 132
  year: 2018
  end-page: 141
  ident: b38
  article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 140
  year: 2016
  end-page: 154
  ident: b17
  article-title: Agent-based fuzzy constraint-directed negotiation mechanism for distributed job shop scheduling
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 200
  start-page: 395
  year: 2010
  end-page: 408
  ident: b10
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: European Journal of Operational Research
– volume: 109
  start-page: 77
  year: 2019
  end-page: 88
  ident: b14
  article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective
  publication-title: Computers & Operations Research
– volume: 183
  year: 2021
  ident: b27
  article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 176
  year: 2021
  end-page: 197
  ident: b41
  article-title: Multidirection update-based multiobjective particle swarm optimization for mixed no-idle flow-shop scheduling problem
  publication-title: Complex System Modeling and Simulation
– volume: 94
  year: 2020
  ident: b35
  article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search
  publication-title: Omega
– volume: 14
  start-page: 193
  year: 2022
  end-page: 209
  ident: b20
  article-title: A multiobjective memetic algorithm for integrated process planning and scheduling problem in distributed heterogeneous manufacturing systems
  publication-title: Memetic Computing
– volume: 194
  year: 2020
  ident: b48
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowledge-Based Systems
– volume: 26
  start-page: 646
  year: 2021
  end-page: 663
  ident: b18
  article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Tsinghua Science and Technology
– volume: 75
  year: 2022
  ident: b28
  article-title: A network memetic algorithm for energy and labor-aware distributed heterogeneous hybrid flow shop scheduling problem
  publication-title: Swarm and Evolutionary Computation
– volume: 46
  start-page: 139
  year: 2015
  end-page: 149
  ident: b31
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 19
  start-page: 8833
  year: 2022
  end-page: 8865
  ident: b42
  article-title: Multiobjective particle swarm optimization with direction search and differential evolution for distributed flow-shop scheduling problem
  publication-title: Mathematical Biosciences and Engineering
– volume: 27
  start-page: 231
  year: 2016
  end-page: 249
  ident: b2
  article-title: A survey of multi-factory scheduling
  publication-title: Journal of Intelligent Manufacturing
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b12
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 52
  start-page: 1461
  year: 2020
  end-page: 1474
  ident: b19
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Engineering Optimization
– volume: 90
  year: 2020
  ident: b5
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 26
  start-page: 461
  year: 2021
  end-page: 475
  ident: b33
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 150
  year: 2020
  ident: b34
  article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation
  publication-title: Expert Systems with Applications
– volume: 240
  start-page: 338
  year: 2015
  end-page: 354
  ident: b36
  article-title: Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time
  publication-title: European Journal of Operational Research
– volume: 289
  start-page: 1209
  year: 2021
  end-page: 1222
  ident: b13
  article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms
  publication-title: European Journal of Operational Research
– volume: 7
  start-page: 66879
  year: 2019
  end-page: 66894
  ident: b16
  article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm
  publication-title: IEEE Access
– year: 2010
  ident: b39
  article-title: Introduction to evolutionary algorithms
– volume: 169
  start-page: 781
  year: 2006
  end-page: 800
  ident: b24
  article-title: A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility
  publication-title: European Journal of Operational Research
– volume: 194
  year: 2020
  ident: b25
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowledge-Based Systems
– volume: 113
  start-page: 113
  year: 1999
  end-page: 122
  ident: b3
  article-title: Heuristics for scheduling in a flow shop with multiple processors
  publication-title: European Journal of Operational Research
– volume: 17
  start-page: 229
  year: 1999
  end-page: 235
  ident: b30
  article-title: Reinforcement learning: An introduction
  publication-title: Robotica
– year: 2023
  ident: b15
  article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Knowledge-Based Systems
– volume: 38
  start-page: 3189
  year: 2020
  end-page: 3199
  ident: b6
  article-title: Fuzzy distributed two-stage hybrid flow shop scheduling problem with setup time: Collaborative variable search
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 149
  year: 2020
  ident: b8
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
– year: 2023
  ident: b9
  article-title: An improved multi-population genetic algorithm with a greedy job insertion inter-factory neighborhood structure for distributed heterogeneous hybrid flow shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 1043
  year: 2022
  end-page: 1057
  ident: b43
  article-title: Distributed co-evolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 130
  start-page: 661
  year: 2019
  end-page: 670
  ident: b44
  article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems
  publication-title: Computers & Industrial Engineering
– volume: 125
  start-page: 423
  year: 2018
  end-page: 433
  ident: b45
  article-title: Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment
  publication-title: Computers & Industrial Engineering
– volume: 5
  start-page: 947
  year: 2020
  end-page: 961
  ident: b32
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 134
  year: 2021
  ident: b21
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Computers & Operations Research
– volume: 25
  start-page: 881
  year: 2014
  end-page: 897
  ident: b40
  article-title: Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem
  publication-title: Journal of Intelligent Manufacturing
– volume: 145
  year: 2020
  ident: b47
  article-title: Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW
  publication-title: Expert Systems with Applications
– volume: 201
  year: 2022
  ident: b23
  article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints
  publication-title: Expert Systems with Applications
– volume: 214
  year: 2023
  ident: b29
  article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 591
  year: 2011
  end-page: 607
  ident: b7
  article-title: A multi-facet survey on memetic computation
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 32
  start-page: 121
  year: 2017
  end-page: 131
  ident: b11
  article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem
  publication-title: Swarm and Evolutionary Computation
– start-page: 1
  year: 2020
  end-page: 19
  ident: b37
  article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery
  publication-title: International Journal of Production Research
– volume: 12
  start-page: 724
  year: 2018
  end-page: 737
  ident: b1
  article-title: Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 59
  start-page: 5404
  year: 2021
  end-page: 5421
  ident: b4
  article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop
  publication-title: International Journal of Production Research
– year: 2023
  ident: 10.1016/j.eswa.2023.121570_b15
  article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110309
– volume: 201
  year: 2022
  ident: 10.1016/j.eswa.2023.121570_b23
  article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117256
– volume: 26
  start-page: 1043
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2023.121570_b43
  article-title: Distributed co-evolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2022.3150771
– volume: 5
  start-page: 947
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b32
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2020.3022372
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2023.121570_b12
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 26
  start-page: 646
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b18
  article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2021.9010007
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b47
  article-title: Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113151
– volume: 15
  start-page: 591
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2023.121570_b7
  article-title: A multi-facet survey on memetic computation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2132725
– volume: 149
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b8
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106778
– volume: 25
  start-page: 881
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2023.121570_b40
  article-title: Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-013-0814-2
– volume: 19
  start-page: 8833
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2023.121570_b42
  article-title: Multiobjective particle swarm optimization with direction search and differential evolution for distributed flow-shop scheduling problem
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2022410
– volume: 32
  start-page: 121
  year: 2017
  ident: 10.1016/j.eswa.2023.121570_b11
  article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2016.06.002
– volume: 150
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b34
  article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113216
– volume: 59
  start-page: 5404
  issue: 18
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b4
  article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1780333
– volume: 94
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b35
  article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search
  publication-title: Omega
  doi: 10.1016/j.omega.2019.102117
– volume: 109
  start-page: 77
  year: 2019
  ident: 10.1016/j.eswa.2023.121570_b14
  article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2019.05.002
– volume: 19
  start-page: 3379
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b26
  article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2021.3119353
– year: 2023
  ident: 10.1016/j.eswa.2023.121570_b9
  article-title: An improved multi-population genetic algorithm with a greedy job insertion inter-factory neighborhood structure for distributed heterogeneous hybrid flow shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.119805
– volume: 183
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b27
  article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115453
– volume: 125
  start-page: 423
  year: 2018
  ident: 10.1016/j.eswa.2023.121570_b45
  article-title: Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.09.007
– volume: 184
  year: 2019
  ident: 10.1016/j.eswa.2023.121570_b22
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.104894
– volume: 46
  start-page: 139
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2023.121570_b31
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2015.2416127
– volume: 26
  start-page: 461
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b33
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3106168
– volume: 130
  start-page: 661
  year: 2019
  ident: 10.1016/j.eswa.2023.121570_b44
  article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.03.019
– volume: 113
  start-page: 113
  issue: 1
  year: 1999
  ident: 10.1016/j.eswa.2023.121570_b3
  article-title: Heuristics for scheduling in a flow shop with multiple processors
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00423-2
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b37
  article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery
  publication-title: International Journal of Production Research
– volume: 169
  start-page: 781
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2023.121570_b24
  article-title: A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.06.038
– volume: 194
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b25
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105527
– volume: 92
  start-page: 132
  year: 2018
  ident: 10.1016/j.eswa.2023.121570_b38
  article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.09.032
– volume: 7
  start-page: 66879
  year: 2019
  ident: 10.1016/j.eswa.2023.121570_b16
  article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917273
– volume: 53
  start-page: 140
  year: 2016
  ident: 10.1016/j.eswa.2023.121570_b17
  article-title: Agent-based fuzzy constraint-directed negotiation mechanism for distributed job shop scheduling
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2016.04.005
– volume: 12
  start-page: 724
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.121570_b1
  article-title: Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2018.1517052
– volume: 1
  start-page: 176
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b41
  article-title: Multidirection update-based multiobjective particle swarm optimization for mixed no-idle flow-shop scheduling problem
  publication-title: Complex System Modeling and Simulation
  doi: 10.23919/CSMS.2021.0017
– year: 2010
  ident: 10.1016/j.eswa.2023.121570_b39
– volume: 17
  start-page: 229
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2023.121570_b30
  article-title: Reinforcement learning: An introduction
  publication-title: Robotica
– volume: 8
  start-page: 96115
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b46
  article-title: Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996305
– volume: 134
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b21
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2021.105400
– volume: 27
  start-page: 231
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.121570_b2
  article-title: A survey of multi-factory scheduling
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0890-y
– volume: 240
  start-page: 338
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2023.121570_b36
  article-title: Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.07.004
– volume: 90
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b5
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103540
– volume: 194
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b48
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105536
– volume: 38
  start-page: 3189
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b6
  article-title: Fuzzy distributed two-stage hybrid flow shop scheduling problem with setup time: Collaborative variable search
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 52
  start-page: 1461
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2023.121570_b19
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2019.1674295
– volume: 289
  start-page: 1209
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121570_b13
  article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.07.059
– volume: 200
  start-page: 395
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2023.121570_b10
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.01.008
– volume: 14
  start-page: 193
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2023.121570_b20
  article-title: A multiobjective memetic algorithm for integrated process planning and scheduling problem in distributed heterogeneous manufacturing systems
  publication-title: Memetic Computing
  doi: 10.1007/s12293-022-00364-x
– volume: 75
  year: 2022
  ident: 10.1016/j.eswa.2023.121570_b28
  article-title: A network memetic algorithm for energy and labor-aware distributed heterogeneous hybrid flow shop scheduling problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101190
– volume: 214
  year: 2023
  ident: 10.1016/j.eswa.2023.121570_b29
  article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119151
SSID ssj0017007
Score 2.6210976
Snippet Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121570
SubjectTerms Energy-efficient
Heterogeneous distributed scheduling
Hybrid flow-shop scheduling
Memetic algorithm
Particle swarm optimization
Q-learning
Title A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem
URI https://dx.doi.org/10.1016/j.eswa.2023.121570
Volume 237
WOSCitedRecordID wos001084350400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3miXl-bALUqVuOnGOVZoeR1WIC2ityh27D7UJKXNPvhn_BP-DuPYcdourNgDl6hKY9fqfJkZj-ebIeTNsbaBOb5psUT3LVIs8vlQE5jjoToOs0RxqZpmE_HpKZtMks-93q-WC3OxjMuSXV0lq_8qaryHwtbU2VuI202KN_AzCh2vKHa8_pPgxyZJsOILo8u8QhayKcu6nFbreT0rTPB1Zcd6m8tsXXgV6o7CkjKbE4Uvvu0oMfW1qcu9xux5NkzSVApveIO-bKpQ6JyCXFfh1Q208OmZzrOpcJVSJ9nOfmhmmKeW1aW_mVUrDzfVaOQsF77pabNzRqALMNe2zHRLwNs6ar8W7v4my-8I9KnLL5qbXIKO6PZeWppAvTmvnK5zw-d5ZUfbEAiNuhwwF8uM_Sg07X5atU5NMRmrmHURDdOh5JrNMOGLxUDi3z3Q3eQH3cO7Bbr3DKdLZ2wz5RapniPVc6RmjjvkgMajhPXJwfjjyeSTO-CKA8Pkb1du-Vwm9XB_JX_2mbb8oLOH5L7dwMDYgOcR6cnyMXnQNgcBayuekJ9j2MUhWByCwyFouUKLQ2hwCNs4BMQh7OMQGhyCwSEgDmEfh7CFQ9jBIRgcgsMhdDgEi8On5Ou7k7O3H3zbJsQXqFVqX1EqAy6UZDzIOItGuIUOOZrtOOSUCfw2R7daRXlOQy5CkTPJMp7HKkH_Vahs-Iz0y6qUhwQUDUNUaoEIZBJFmcyoiFTCWcwimvOMHpGwFUQqbA193cplmf4dAkfEc2NWpoLMjU-PWvmm1gc2vm2KcL1h3PNb_coLcq97j16Sfr0-l6_IXXFRzzfr1xarvwERs-Fv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiobjective+memetic+algorithm+with+particle+swarm+optimization+and+Q-learning-based+local+search+for+energy-efficient+distributed+heterogeneous+hybrid+flow-shop+scheduling+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Wenqiang&rft.au=Li%2C+Chen&rft.au=Gen%2C+Mitsuo&rft.au=Yang%2C+Weidong&rft.date=2024-03-01&rft.issn=0957-4174&rft.volume=237&rft.spage=121570&rft_id=info:doi/10.1016%2Fj.eswa.2023.121570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon